scholarly journals Influence of metal nanocarboxylates and different water supply conditions on efficiency of soybean-rhizobial symbiotic systems

2021 ◽  
Vol 12 (3) ◽  
pp. 383-390
Author(s):  
S. Y. Kots ◽  
L. I. Rybachenko ◽  
T. P. Mamenko ◽  
K. P. Kukol ◽  
P. P. Pukhtaievych ◽  
...  

Insufficient water supply is one of the main factors that significantly reduce the activity of nitrogen fixation by legume-rhizobial symbiotic systems. That is why comprehensive research on aspects of their resistance to water stress and the search for scientifically substantiated ways to improve the existing ones and develop modern, competitive technologies of growing legumes in arid conditions are becoming especially relevant. The aim of the work was to investigate the processes of formation and functioning of soybean-rhizobial symbiotic systems developed under conditions of different water supply and influence of nanocarboxylates of cobalt, ferum, germanium, chromium, сuprum and molybdenum. The nanoparticles of specified metal nanocarboxylates were used as components of the inoculation suspension of rhizobia of Tn5 mutant B1-20 for soybean seed treatment. A model drought lasting 14 days was created by controlled irrigation. Microbiological and physiological research methods were used in the study. We determined that insufficient water supply caused a significant decrease in the nodulation potential of rhizobia and the intensity of molecular nitrogen fixation by symbiotic systems formed with the participation of soybean plants and nodule bacteria without adding these metal nanocarboxylates to the inoculation suspension. Application of most of the metal nanocarboxylates used as components of the inoculation suspension mitigated the negative impact of stress on the investigated parameters. The study revealed the stimulating effect of cobaltnanocarboxylate on the activity of molecular nitrogen fixation, which was more pronounced in the conditions of insufficient water supply. Symbiotic soybean systems formed with the participation of nodule bacteria containing germaniumcarboxylate nanoparticles were proved to be the least sensitive to the negative impact of insufficient water supply. This was indicated by high rates of nodulation and nitrogen-fixing activity compared with other studied symbiotic systems. We confirmed that the addition of chromium nanocarboxylate to the inoculation suspension of rhizobia provided the highest rates of nodulation and nitrogen-fixing activity of soybean root nodules under optimal growing conditions and, at the same time, had no noticeable positive effect under water stress. We determined that сuprum and molybdenum nanocarboxylates, as components of the inoculation suspension, regardless of the water supply level, had a less notable positive effect on the processes of nodule formation and nitrogen fixation, and in some cases even led to a decrease in the investigated values for control plants. Thus, the study demonstrated that the use of germanium, cobalt and ferum nanocarboxylates as components of the bacterial suspension helped to increase the adaptation of the formed legume-rhizobial symbiotic systems to water stress, as evidenced by the maximum indexes of nodulation and molecular nitrogen fixation in the context of insufficient water supply and recovery of their level to optimal after the stress influence had ended. Based on the results, it was concluded that inoculation of seeds by the complex bacterial preparations made on the basis of Bradyrhizobium japonicum B1-20 with a content of germanium, cobalt and ferum nanocarboxylates in the concentration of 1:1000 can become one of the important means in soybean growing technologies of increasing the nitrogen-fixing potential and resistance of plants to insufficient water supply.

Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 574
Author(s):  
Yun-Yin Feng ◽  
Jin He ◽  
Yi Jin ◽  
Feng-Min Li

Both water stress and P deficit limit soybean seed yield, but the effects of water regimes and P application rates, their interaction on P status, acquisition, and partitioning, and their roles in yield performance have not been well-studied. Two soybean genotypes (Huangsedadou (HD) and Zhonghuang 30 (ZH)) with contrasting seed yield and root dry weight (DW) were used to investigate the P status, P acquisition, P partitioning, and yield formation under two water regimes (well-watered (WW) and cyclic water stress (WS)) and three P rates (0 (P0), 60 (P60), and 120 (P120) mg P kg−1 dry soil). The results show that increased P and water supply increased the seed yield, shoot and root DW and P concentrations and accumulations in different organs. Cultivar ZH had a significantly higher seed yield than HD at P60 and P120 under WS and at P0 under WW, but a lower seed yield at P60 and P120 under WW. Cultivar ZH had a significantly higher P harvest index and P acquisition efficiency, but a significantly lower shoot and root DW than HD. The interaction between water treatments and P rates had significant effects on leaf and stem P concentration. Cultivar ZH had significantly lower P partitioning to leaves and stems but significantly higher P partitioning to seeds than HD. The seed yield was positively correlated with leaf and seed P accumulations and P acquisition efficiency under WS. We conclude that (1) adequate water supply improved the P mobilization from leaves and stems at maturity, which may have improved the seed yield; and (2) the high P acquisition efficiency is coordination to high P partition to seeds to produce a high seed yield under water- and P-limited conditions.


2013 ◽  
Vol 17 ◽  
pp. 7-20
Author(s):  
O. V. Nadkernychna ◽  
E. P. Kopylov

The paper presents the study of active nitrogen fixation bacteria of genera Azotobacter, Azospirillum, Bacillus, Flavobacterium, Enterobacter and Pseudomonas isolated from root zone of spring wheat plants. The ability of selected diazotrophs to form associative systems with spring wheat was investigated. The most significant increase of molecular nitrogen fixation activity in root zone of plants was observed under the Azospirillum species background.


Author(s):  
V.V. Martynenko ◽  
A.B. Rysbek ◽  
A.A. Kurmanbayev ◽  
Zh.A. Baigonusova

A field experiment of a biological preparation based on the association of nitrogen-fixing bacteria was carried out. The composition includes active and compatible strains of nitrogen-fixing and nodule bacteria. As a result, the biological preparation had a positive effect on germination, length and vegetative mass of peas. The results of research indicate the perspective of the industrially valuable strains of this association. Optimal conditions for the work of the biological preparation are light mechanical composition of the soil and the provision of moisture during the growing season of plants. This preparation may be recommended for use in the Northern regions of Kazakhstan.


1969 ◽  
Vol 172 (1029) ◽  
pp. 401-416 ◽  

It is now clear from studies with soybean root nodules that the nitrogen fixing activity resides in the bacteroids which are the symbiotic form of the root nodule bacteria. These develop as a result of a complex series of changes in metabolism and structure which occur in the bacteria during the final stages of growth within membrane-enclosed vesicles in the host cytoplasm. Nitrogenase appears when these changes are complete. The primary product of nitrogen fixation is NH 3 , which in intact nodules, is rapidly transformed into α -amino compounds which are used by the host plant. In suspensions of bacteroids and in cell-free extracts prepared from them, the reaction terminates in NH 3 , which is released into the medium. Free O 2 , which is required for the production of energy for nitrogen fixation by nodules and by bacteroid suspensions, also causes inactivation of the nitrogen fixing system and exerts important kinetic influences upon the reaction. Reducing power and energy for the reduction of N 2 to NH 3 is provided by a photosynthetic product from the host in nodules; in bacteroid suspensions, a substrate such as succinate is required. In cell-free extracts, requirements for energy and reductant are met by ATP and dithionite. The natural reductant has not yet been identified. A schematic representation of various factors which affect nitrogen fixation in nodules, bacteroid suspensions and cell-free extracts is presented.


2022 ◽  
Vol 12 (4) ◽  
pp. 628-634
Author(s):  
V. P. Bessonova ◽  
A. S. Chonhova

The long-term increases in average temperature and intensification of droughts which characterise the current state of the Earth’s climate system have a negative impact on forest ecosystems and can lead to a decrease in their area and deterioration of the living conditions of their components. In the conditions of the Ukrainian Steppe an important environmental, antierosion, water-protective and soil-protective role belongs to the ravine forests. The most valuable component of the ravine forests is presented by natural populations of common oak (Quercus robur L.), which are able to tolerate the arid climate typical of the steppe region. But with global warming, the endurance of this species is changing. It is believed that a significant role in plant adaptation to drought and high temperatures may belong to non-structural carbohydrates. Therefore, it is important to study changes in the concentration of these substances in the leaves of this leading species under the action of adverse hydrothermal conditions. The article analyzes the content and dynamics of soluble sugars (glucose, fructose, sucrose) and starch in the leaves of Quercus robur L. under different forest growth conditions of the ravine forest (hygromesophilic (CL2–3), mesoxerophilic (CL1) and xerophilic (CL0)). The research was conducted in the forest in the Viyskove area (steppe zone of Ukraine) in the thalweg and at different levels of slope of southern exposure. Content of glucose, fructose, sugar and starch in Quercus robur leaves was determined. It was found that when exposed to high temperatures and increasing water stress during the vegetation period in xerophilic (CL0–1) and mesoxerophilic (CL1) forest growth conditions, the concentration of both glucose and sucrose in the leaves of Q. robur increases and it becomes much higher than in conditions of more optimal water supply. At the same time, the disaccharide content increases more significantly than that of monosaccharide. The greatest amount of these sugars is observed in the driest months (July, August), when conditions for providing plants with water are the most stressful. When water stress grows the increase in concentration of glucose and sucrose is correlated with reduction of starch content. It has been found that the concentration of fructose in Q. robur leaves in droughty conditions of growing was comparable to more favourable conditions of moisture. In September, there is a decline in the content of all forms of non-structural carbohydrates in the leaves of plants of all variants compared to the previous month, especially in conditions of adverse water supply. Therefore, forest growth conditions do not affect the nature of the dynamics of soluble sugars and starch in the leaves of Q. robur, although they change their quantitative indicators. Based on the protective function of sugars under the action of stressors on plants, we can assume that in conditions of significant lack of moisture in the soil their accumulation in the leaves in areas with mesoxerophilic and xerophilic hygrotopes plays an important role in increasing Q. robur drought resistance.


2021 ◽  
Vol 25 (2) ◽  
pp. 56-63
Author(s):  
Ivana Pajčin ◽  
Vanja Vlajkov ◽  
Jelena Dodić ◽  
Aleksandar Jokić ◽  
Jovana Grahovac

Nitrogen is one of the essential elements for plant growth and development in terms of DNA and protein synthesis. Its main reservoir in nature is the atmosphere; however, inert molecular nitrogen present in the air isn't a suitable nitrogen form for plants' nutrition. Therefore it has to be chemically transformed to NH4 + or NO3 - ion by the process known as biological nitrogen fixation. Nitrogen fixation is carried out by free-living or symbiotic nitrogen-fixing prokaryotes (diazotrophs), including bacteria, archaea and cyanobacteria. In order to be used as plant inoculants for nitrogen fixation, the biomass of these prokaryotes must be produced and formulated appropriately through different biotechnological processes. The aim of this study is to summarize the main aspects of biotechnological production of plant inoculants based on nitrogen-fixing bacteria in terms of upstream processing, cultivation and downstream processing, with a special emphasis on cultivation media composition, cultivation conditions, biomass separation and formulation techniques.


2019 ◽  
Vol 17 (2) ◽  
pp. 35-42
Author(s):  
Andrey K. Baymiev ◽  
Roman S. Gumenko ◽  
Anastasiya A. Vladimirova ◽  
Ekaterina S. Akimova ◽  
Zilya R. Vershinina ◽  
...  

Background. Rhizobia are the most effective nitrogen-fixing organisms that can fix nitrogen only in symbiosis with leguminous plants. The general transcriptional activator of nitrogen fixation genes in diazotrophic bacteria is NifA. In this work, the possibility of modifying the regulation of nitrogen fixation in the nodule bacteria Mesorhizobium, Ensifer and Rhizobium was studied by introducing an additional copy of the nifA gene into the bacterial genomes during the regulation of induced bacterial promoters. Materials and methods. A series of expression genetic constructs with NifA genes of nodule bacteria strains under the control of an inducible promoter Pm were created. The resulting constructs were transformed into strains of nodule bacteria. The obtained recombinant strains were investigated for the appearance of their nitrogen-fixing activity in the free-living state. Results. It was shown that the expression of nifA in recombinant cells of all three genera of bacteria leads to the appearance of insignificant nitrogenase activity. At the same time, the level of nitrogenase activity does not have a correlation with the level of expression of the introduced nifA gene, which, most likely, is a consequence of the multilevel regulation of nitrogen fixation. Conclusion. The possibility of artificial activation of nitrogenase activity in nodule bacteria in the free-living state by introducing the NifA regulatory protein gene into bacteria was shown.


2016 ◽  
Vol 24 ◽  
pp. 29-36
Author(s):  
D. V. Krutylo

In the vegetation experiment conditions it was established that the greatest effect of soybean bacterization can be obtained by two strains of nodule bacteria with slow (Bradyrhizobium japonicum 46) and intensive (B. japonicum КВ11) growth rates when these strains used in inoculum in the ratio 1 : 1 (binary composition). In compared to the mono-inoculation the combined use of these strains contributed the formation of balanced symbiotic system, increase the level of molecular nitrogen fixation, content of chlorophyll in the biomass leaves and above ground mass of different soybean plants varieties on 7.8–19.6 %. In a field experiment inoculation of soybean seeds with a composition of B. japonicum strains to increase the soybean yields by 11.1–13.7 % compared to the mono-inoculation.


Author(s):  
R. Comber

AbstractThe Oriental tobacco variety Izmir has been grown in sand culture in a greenhouse under various degrees of water stress. Plants given 400 cm


Author(s):  
N.I. ABRAMOVA ◽  
G.S. VLASOVA ◽  
O.L. KHROMOVA

Проведен сопоставительный анализ генеалогической структуры племенного поголовья ярославской породы Вологодской области по данным 2005 и 2018 годов. Установлено, что в 2005 году в структуру породы входили 8 отечественных генеалогических линий. В результате скрещивания с голштинской породой произошли значительные изменения. Доля животных, принадлежащих к линиям ярославской породы, уменьшилась со 100% в 2005 году до 35,3% в 2018 году. В генеалогическую структуру современной популяции добавились 3 линии голштинской селекции, к которым на 1.01.2019 года относится большая часть маточного поголовья: к линии Рефлекшн Соверинга 198998 — 42,9%, Вис Бэк Айдиала 1013415 — 13%, Монтвик Чифтейна 95679 — 8,8%. Скрещивание с голштинской породой оказало положительное влияние на повышение молочной продуктивности животных ярославской породы. Средний надой на 1 корову увеличился на 1670 кг молока, доля коров с продуктивностью более 6000 кг молока выросла на 35%. В результате расчета корреляционной зависимости между кровностью по голштинской породе и массовой долей жира и белка в молоке установлено, что скрещивание не ухудшило качественные показатели молока коров ярославской породы (степень кровности с МДЖ — r=-0,01; с МДБ — r=0,09; P<0,01), но в то же время отразилось отрицательно на продолжительности хозяйственного использования животных в стаде (r=-0,27; P<0,001). Для дальнейшего совершенствования породы следует определить оптимальную степень прилития крови голштинской породы. А с целью сохранения генофонда необходимо получение нового поколения чистопородных быков ярославской породы с более высоким потенциалом продуктивности. The authors conduct a comparative analysis of the genealogical structure of the breeding stock of the Yaroslavl breed in the Vologda region on the basis of the data for 2005 and 2018. It is established that in 2005 the structure of the breed included 8 domestic genealogical lines. As a result of the crossing with the Holstein breed, significant changes occurred. The share of animals of the Yaroslavl breed lines decreased from 100% in 2005 to 35.3% in 2018. The genealogical structure of the modern population got 3 added lines of the Holstein selection which as of 1.01.2019 include most of the breeding stock: Reflection Sovering line 198998 - 42.9%, Vis Back Ideal line 1013415 - 13%, and Montwick Chieftain line 95679 - 8.8%. The crossing with the Holstein breed had a positive effect on the increase in the milk productivity of the Yaroslavl breed animals. The average milk yield per 1 cow increased by 1670 kg of milk and the share of cows with the productivity of more than 6000 kg of milk increased by 35%. The results of the calculations of the correlation between the Holstein thoroughbredness and the fat and protein content in the milk showed that the crossing did not impair the quality indicators of the milk the Yaroslavl breed cows (thoroughbredness degree with the fat content r=-0.01; with the protein content r=0.09 P<0.01), but at the same time had a negative impact on the duration of the economic use of the animals in the herd (r=-0.27; P<0.001). For further improvement of the breed, there is a need to determine the optimal degree of crossing with the Holstein breed. Also, in order to preserve the gene pool, there is a need to obtain a new generation of purebred bulls of the Yaroslavl breed with a higher productivity potential.


Sign in / Sign up

Export Citation Format

Share Document