scholarly journals COMPOSITION OF STRAINS BRADYRHIZOBIUM JAPONICUM AND ITS USE FOR SOYBEAN INOCULATION

2016 ◽  
Vol 24 ◽  
pp. 29-36
Author(s):  
D. V. Krutylo

In the vegetation experiment conditions it was established that the greatest effect of soybean bacterization can be obtained by two strains of nodule bacteria with slow (Bradyrhizobium japonicum 46) and intensive (B. japonicum КВ11) growth rates when these strains used in inoculum in the ratio 1 : 1 (binary composition). In compared to the mono-inoculation the combined use of these strains contributed the formation of balanced symbiotic system, increase the level of molecular nitrogen fixation, content of chlorophyll in the biomass leaves and above ground mass of different soybean plants varieties on 7.8–19.6 %. In a field experiment inoculation of soybean seeds with a composition of B. japonicum strains to increase the soybean yields by 11.1–13.7 % compared to the mono-inoculation.

2010 ◽  
Vol 10 ◽  
pp. 20-28
Author(s):  
S.M. Malichenko ◽  
V.K. Datsenko ◽  
P.M. Mamenko ◽  
S.Ya. Kots

The efficiency of the presowing soybean inoculation with nodule bacteria at direct seeds bacterization or introduction of inoculum to the soil at presowing cultivation as well as the ability of rhizobia remained in the soil to the next year to form active symbioses with soybean plants was studied. The liquid bacterial cultures of production strain Bradyrhizobium japonicum 634b and three perspective Tn5-mutants of B. japonicum 646 were used. The introduction of the inoculum to soil was shown to be more efficient during both years of investigations as compared with the seeds inoculation which resulted in higher number of nodules formed, their nitrogenase activity and greater soybean seeds yield. Two of three studied Tn5-mutants had surpassed the standard strain by the efficiency indices.


2019 ◽  
Vol 29 ◽  
pp. 29-36
Author(s):  
N. M. Melnykova ◽  
S. Ya. Kots

Objective. Study the peculiarities of nodule formation upon the formation of the symbiotic sys-tem soybean-Bradyrhizobium japonicum 634b, as well as the symbiotic nitrogen-fixation ability and plant growth and development under the influence of goat’s-rue rhizobia. Methods. Microbiologi-cal, physiological, statistical, gas chromatography. Results. In green house experiments, using sand as a substrate for growing plants, the mixed microbial cultures combining soybean nodule bacteria B. japonicum 634b and goat’s-rue nodule bacteria R. galegae 0702 or R. galegae 0703 in the ratio of 1 : 1 differed from the monoculture bradyrhizobium by their influence on the nodulation, nitro-gen-fixation ability of soybean-rhizobial symbiosis and development of soybean plants (variety Almaz). Increased nodulation activity in the primordial leaf and budding phases, as well as a signif-icant decrease in the level of symbiosis nitrogen fixation during budding, were observed when used in binary bacterial compositions of strain R. galegae 0703. These rhizobia of goat’s-rue suppressed the development of the root system of soybeans, but had no significant effect on the formation of the aerial part of the plants throughout the observation period. R. galegae 0702 strain slightly slowed the formation of nodules by bacteria in the primordial leaf phase, which caused a decrease in the number of soybean plants that formed symbiosis with B. japonicum 634b. Goat’s-rue nodule bacte-ria R. galegae 0702 improved the formation of the root system, and stimulated the growth and de-velopment of the aerial part of the macro symbiont in the phase of two trigeminal leaves. Conclu-sion. Combined inoculation of the rhizobia of goat’s-rue with nodule bacteria B. japonicum 634b showed a multidirectional effect on the formation of symbiosis by soybean plants of variety Almaz and functioning of soybean rhizobial symbiosis. The nature of the influence of R. galegae depended on their strain affiliation.


2018 ◽  
Vol 10 (12) ◽  
pp. 321 ◽  
Author(s):  
Erica Chaves ◽  
Rubson da Costa Leite ◽  
Thalita Rodrigues Silva ◽  
Thayny Alves Viana ◽  
Tatiane de Sousa Cruz ◽  
...  

Among the several factors that may influence nodulation and the efficiency of biological nitrogen fixation for soybean plants, nutrient availability is among the most important. This study aimed to evaluate the inoculation with Bradyrhizobium japonicum and doses of phosphorus on the development of soybean in a Vertisol, in Tocantins. The experimental design was completely randomized in a 4 × 2 factorial scheme, with four replications. Four doses of phosphate fertilization (0, 100, 200, and 300 kg ha-1 P2O5) were studied, combined with two inoculation treatments with Bradyrhizobium japonicum (inoculated and not inoculated). The following variables were evaluated: plant height, stem diameter, nodules per plant, dry mass of nodules, dry mass of plant, dry mass of root, number of pods and number of grains per pod. Under greenhouse conditions and soil with good availability of phosphorus, there is no influence of the doses on the inoculation with Bradyrhizobium japonicum. Soils with good availability of phosphorus have low response to the application of phosphate fertilizer.


Author(s):  
João W. Bossolani ◽  
Nadia M. Poloni ◽  
Edson Lazarini ◽  
João V. T. Bettiol ◽  
João A. Fischer Filho ◽  
...  

ABSTRACT Soybean has traditionally been produced in systems that include the use of herbicides, often in higher than recommended doses. The process of symbiotic nitrogen fixation in legumes can be hampered by these herbicides, both by direct effects on rhizobia and indirect effects on the host plant. An outdoor experiment was performed to evaluate the effects of different doses of a glyphosate herbicide on Bradyrhizobium strains and biological nitrogen fixation in soybean BMX Potência RR plants. Soybean seeds were inoculated with Bradyrhizobium elkanii (SEMIA 5019) and Bradyrhizobium japonicum (SEMIA 5079) strains in a commercial liquid inoculant. The treatments consisted of the absence and presence of Bradyrhizobium genotypes inoculated via seed and four doses of the herbicide glyphosate applied on the leaves (0, 1.0, 2.0, and 4.0 L ha-1 of the commercial product) at the V3 stage. The leaf chlorophyll index of inoculated RR soybean plants did not change on the application of glyphosate and, regardless of inoculation, plants had the capacity to recover from the effects of glyphosate application, without impaired development.


2020 ◽  
Vol 4 (24) ◽  
pp. 72-80
Author(s):  
M.Yu. Kozyreva ◽  
◽  
L.Zh. Basieva ◽  
A.Kh. Kozyrev ◽  
◽  
...  

The issue of the use of mineral forms of nitrogen for legumes is still a source of debate among scientists. Under the environmental conditions of the foothill zone of RNO-Alania, the field experiments were laid to study the activity of the symbiotic system and the productivity of the alfalfa depending on the type of nitrogen nutrition and the presence of a virulent active strain of rhizobia. The research was carried out in 2017– 2019. Soil – chernozems leached. Objects: crops of Medicago varia Mart.; industrial strain of rhizotorphin 425a; inoculum of high-mountain strains of nodule bacteria; starting doses of nitrogen fertilizers. The dimensions of the symbiotic apparatus were studied according to the G.S. Posypanov method. The specific activity of symbiosis was 4.2 to 9.0 mg/kg. The maximum amount of air nitrogen (456.1 kg/ha) for three years of experiments was fixed by the symbiotic system of alfalfa in the variant with pre-sowing seed inoculation with high-mountain strains of nodule bacteria. This indicates their higher activity and competitiveness compared to the industrial strain of rhizotorphin 425a and indigenous strains of rhizobia from the pre-mountain zone of RNO-Alania. Mineral forms of nitrogen significantly inhibited the activity of the symbiotic system. As a result, the amount of fixed nitrogen decreased by 3.5–9.0 %. In the pre-mountain zone, under natural conditions, the growth and development of plants were provided with atmospheric nitrogen by 66 %, the rest of the need for the element (34 %) they satisfied with soil nitrogen. The maximum involvement of molecular nitrogen of the atmosphere in the biological cycle was distinguished by the variant with pre-sowing inoculation of seeds by virulent active strains of rhizobia, in which the share of air nitrogen participation in plant nutrition averaged 71–73 % over the three years of research.


2008 ◽  
Vol 6 ◽  
pp. 84-91
Author(s):  
D.V. Krutуlo

The results of studying of the soybean nodule bacteria presence in epiphytic and endophytic microflora of different grades of soybean seeds are presented. The soybean rhizobia was not revealed on the surface and in deep layers of soybean seeds. The soybean seed microbiota of investigated varieties is presented by several morphological types of bacteria and fungy. Their quantity depends on the period of seed storage.


2009 ◽  
Vol 8 ◽  
pp. 52-61
Author(s):  
V.K. Datsenko ◽  
V.M. Mel’nyk ◽  
S.Ya. Kots ◽  
S.V. Omel’chuk

The influence of soybean seeds inoculation with Tn-5 mutants of Bradyrhizobium japonicum with polar symbiotic properties on symbiosis efficiency, photosynthetic intensity and activity of antioxidant enzymes in root nodules of host plant was studied. Most of the selected mutants were highly virulent, but as was shown there were no considerable correlation between studied parameters. The direct relationship of nitrogen fixation activity of roots nodules and photosynthesis intensity of host plant was established. The two types of dynamics of theses processes were determined with their maximum values in blooming and flowering stages, respectively.  


2020 ◽  
Vol 11 (1) ◽  
pp. 98-104
Author(s):  
T. P. Mamenko ◽  
S. Y. Kots ◽  
Y. O. Khomenko

The effect of pre-sowing treatment of soybean seeds with fungicides on the intensity of ethylene release, the processes of nodulation and nitrogen fixation in different symbiotic systems in the early stages of ontogenesis were investigated. The objects of the study were selected symbiotic systems formed with the participation of soybean (Glycine max (L.) Merr.) Diamond variety, strains Bradyrhizobium japonicum 634b (active, virulent) and 604k (inactive, highly virulent) and fungicides Maxim XL 035 PS (fludioxonil, 25 g/L, metalaxyl, 10 g/L), and Standak Top (fipronil, 250 g/L, thiophanate methyl, 225 g/L, piraclostrobin, 25 g/L). Before sowing, the seeds of soybean were treated with solutions of fungicides, calculated on the basis of one rate of expenditure of the active substance of each preparation indicated by the producer per ton of seed. One part of the seeds treated with fungicides was inoculated with rhizobium culture for 1 h (the titre of bacteria was 107 cells/mL). To conduct the research we used microbiological, physiological, biochemical methods, gas chromatography and spectrophotometry. It is found that, regardless of the effectiveness of soybean rhizobial symbiosis, the highest level of ethylene release by plants was observed in the stages of primordial leaf and first true leaf. This is due to the initial processes of nodulation – the laying of nodule primordia and the active formation of nodules on the roots of soybeans. The results show that with the participation of fungicides in different symbiotic systems, there are characteristic changes in phytohormone synthesis in the primordial leaf stage, when the nodule primordia are planted on the root system of plants. In particular, in the ineffective symbiotic system, the intensity of phytohormone release decreases, while in the effective symbiotic system it increases. At the same time, a decrease in the number of nodules on soybean roots inoculated with an inactive highly virulent rhizobia 604k strain due to the action of fungicides and an increase in their number in variants with co-treatment of fungicides and active virulent strain 634b into the stage of the second true leaf were revealed. It was shown that despite a decrease in the mass of root nodules, there is an increase in their nitrogen-fixing activity in an effective symbiotic system with the participation of fungicides in the stage of the second true leaf. The highest intensity of ethylene release in both symbiotic systems was recorded in the stage of the first true leaf, which decreased in the stage of the second true leaf and was independent of the nature of the action of the active substances of fungicides. The obtained data prove that the action of fungicides changes the synthesis of ethylene by soybean plants, as well as the processes of nodulation and nitrogen fixation, which depend on the efficiency of the formed soybean-rhizobial systems and their ability to realize their symbiotic potential under appropriate growing conditions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
I. Gumeniuk ◽  
◽  
A. Levishko ◽  
O. Demyanyuk ◽  
◽  
...  

The efficiency of the formation and functioning of the soybean symbiotic system during the crops treatment with glyphosate and pre-sowing seed inoculation with different strains of Bradyrhizobium in the field studied. It is known, that glyphosate can affect symbiotic nitrogen fixation through direct action on rhizobia and symbiotic formations, we took plant samples for analysis after four weeks of glyphosate treatment and determined the aboveground mass of plants and symbiotic apparatus formation evaluated by the number of nodules, their mass and nitrogen fixation activity. It was shown that the late treatment (35 days after sowing) with glyphosate does not provide a sufficient level of weed control and under such conditions inhibits the development and growth of soybean plants, reduces the growth of aboveground and root mass. Treatment of plants with glyphosate before the formation of symbiotic apparatus (21 days after sowing) reduces nitrogen fixation activity by 3550%, but it does not have a significant effect on the formation of soybean yield. The obtained results confirmed the hypothesis of intensification of the nitrogen complex during late treatment of plants with glyphosate in plants inoculated with Bradyrhizobium japonicum strain EL-35 and the composition of strains of B. japonicum EM-24 and B. japonicum EL-35. The most effective for inoculation of soybean plants was a mixture of the studied strains of B. japonicum EM-24 and B. japonicum EL-35, which provides high nitrogen fixation activity and productivity. Therefore, to reduce the negative impact of glyphosate on the nitrogen fixation activity of symbiotic systems and to obtain high soybean productivity, it is necessary to select rhizobia strains with a high rate of symbiotic system formation, because even a slight decrease in nitrogen fixation can have long-term negative consequences.


Sign in / Sign up

Export Citation Format

Share Document