scholarly journals Elimination of the toxic effect of copper sulfate is accompanied by the normalization of liver function in fibrosis

2021 ◽  
Vol 12 (4) ◽  
pp. 655-663
Author(s):  
A. I. Bozhkov ◽  
A. A. Bozhkov ◽  
I. E. Ponomarenko ◽  
N. I. Kurguzova ◽  
R. A. Akzhyhitov ◽  
...  

The search for biologically active compounds that regulate liver function in fibrosis is an urgent medical and biological problem. A working hypothesis was tested, according to which low molecular weight biologically active compounds from Pleurotus ostreatus and Sacharamirses cerevisiae are capable of exerting immunomodulatory and antitoxic effects after intoxication of the body with ions of heavy metals, in particular copper sulfate. Elimination of the toxic effect caused by copper sulfate can also ensure the normalization of liver function in various pathologies, in particular with liver fibrosis. When determining toxicity, a study was carried out on Wistar rats, and when studying the effect of low molecular weight biologically active compounds on liver function, clinical trials were carried out on volunteers. The activity of alanine aminotransferase, aspartate aminotransferase, actonitase and glutathione peroxidase, as well as the content of bilirubin and lipid hydroperoxides were determined. It was shown that preliminary administration of biologically active compounds to rats at a dose of 0.05 mL/100 g of body weight provided the formation in some animals (up to 80%) of resistance to the toxic effect of copper sulfate (dose 2.5 mg/100 g of body weight). Such stability is associated with a shift in the balance of “prooxidants-antioxidants” towards antioxidants. The data obtained in the clinic on volunteers with liver fibrosis and hepatitis also testify in favour of the membranotropic action of biologically active compounds. Biologically active compounds provided a decrease or complete restoration of the activity of transferases (ALT and AST) in the blood serum of these patients, with the exception of one patient out of 20 examined. Our experiment has shown the relationship between the elimination of toxicity to the action of copper sulfate and the normalization of liver function in patients. The results obtained indicate that it will be promising to use a complex of low molecular weight components from P. ostreatus and S. cerevisiae as an antidote and hepatoprotective agent.

2004 ◽  
Vol 48 (6) ◽  
Author(s):  
Nataliya I. Kalinovskaya ◽  
Elena P. Ivanova ◽  
Yulia V. Alexeeva ◽  
Nataliya M. Gorshkova ◽  
Tatyana A. Kuznetsova ◽  
...  

1999 ◽  
Vol 82 (11) ◽  
pp. 1428-1432 ◽  
Author(s):  
Cheryl Scott ◽  
Francesco Salerno ◽  
Elettra Lorenzano ◽  
Werner Müller-Esterl ◽  
Angelo Agostoni ◽  
...  

SummaryLittle is known about the regulation of high-molecular-weight-kininogen (HK) and low-molecular-weight-kininogen (LK) or the relationship of each to the degree of liver function impairment in patients with cirrhosis. In this study, we evaluated HK and LK quantitatively by a recently described particle concentration fluorescence immunoassay (PCFIA) and qualitatively by SDS PAGE and immunoblotting analyses in plasma from 33 patients with cirrhosis presenting various degrees of impairment of liver function. Thirty-three healthy subjects served as normal controls. Patients with cirrhosis had significantly lower plasma levels of HK (median 49 μg/ml [range 22-99 μg/ml]) and LK (58 μg/ml [15-100 μg/ml]) than normal subjects (HK 83 μg/ml [65-115 μg/ml]; LK 80 μg/ml [45-120 μg/ml]) (p < 0.0001). The plasma concentrations of HK and LK were directly related to plasma levels of cholinesterase (P < 0.0001) and albumin (P < 0.0001 and P < 0.001) and inversely to the Child-Pugh score (P < 0.0001) and to prothrombin time ratio (P < 0.0001) (reflecting the clinical and laboratory abnormalities in liver disease). Similar to normal individuals, in patients with cirrhosis, plasma HK and LK levels paralleled one another, suggesting that a coordinate regulation of those proteins persists in liver disease. SDS PAGE and immunoblotting analyses of kininogens in cirrhotic plasma showed a pattern similar to that observed in normal controls for LK (a single band at 66 kDa) with some lower molecular weight forms noted in cirrhotic plasma. A slight increase of cleavage of HK (a major band at 130 kDa and a faint but increased band at 107 kDa) was evident. The increased cleavage of HK was confirmed by the lower cleaved kininogen index (CKI), as compared to normal controls. These data suggest a defect in hepatic synthesis as well as increased destructive cleavage of both kininogens in plasma from patients with cirrhosis. The decrease of important regulatory proteins like kininogens may contribute to the imbalance in coagulation and fibrinolytic systems, which frequently occurs in cirrhotic patients.


1961 ◽  
Vol 06 (01) ◽  
pp. 015-024 ◽  
Author(s):  
Sven Erik Bergentz ◽  
Oddvar Eiken ◽  
Inga Marie Nilsson

Summary1. Infusions of low molecular weight dextran (Mw = 42 000) to dogs in doses of 1—1.5 g per kg body weight did not produce any significant changes in the coagulation mechanism.2. Infusions of high molecular weight dextran (Mw = 1 000 000) to dogs in doses of 1—1.5 g per kg body weight produced severe defects in the coagulation mechanism, namely prolongation of bleeding time and coagulation time, thrombocytopenia, pathological prothrombin consumption, decrease of fibrinogen, prothrombin and factor VII, factor V and AHG.3. Heparin treatment of the dogs was found to prevent the decrease of fibrinogen, prothrombin and factor VII, and factor V otherwise occurring after injection of high molecular weight dextran. Thrombocytopenia was not prevented.4. In in vitro experiments an interaction between fibrinogen and dextran of high and low molecular weight was found to take place in systems comprising pure fibrinogen. No such interaction occurred in the presence of plasma.5. It is concluded that the coagulation defects induced by infusions of high molecular weight dextran are due to intravascular coagulation.


1997 ◽  
Vol 77 (01) ◽  
pp. 057-061 ◽  
Author(s):  
Dennis W T Nilsen ◽  
Lasse Gøransson ◽  
Alf-Inge Larsen ◽  
Øyvind Hetland ◽  
Peter Kierulf

SummaryOne hundred patients were included in a randomized open trial to assess the systemic factor Xa (FXa) and thrombin inhibitory effect as well as the safety profile of low molecular weight heparin (LMWH) given subcutaneously in conjunction with streptokinase (SK) in patients with acute myocardial infarction (MI). The treatment was initiated prior to SK, followed by repeated injections every 12 h for 7 days, using a dose of 150 anti-Xa units per kg body weight. The control group received unfractionated heparin (UFH) 12,500 IU subcutaneously every 12 h for 7 days, initiated 4 h after start of SK infusion. All patients received acetylsalicylic acid (ASA) initiated prior to SK.Serial blood samples were collected prior to and during the first 24 h after initiation of SK infusion for determination of prothrombin fragment 1+2 (Fl+2), thrombin-antithrombin III (TAT) complexes, fibrinopeptide A (FPA) and cardiac enzymes. Bleeding complications and adverse events were carefully accounted for.Infarct characteristics, as judged by creatine kinase MB isoenzyme (CK-MB) and cardiac troponin T (cTnT), were similar in both groups of patients.A comparable transient increase in Fl+2, TAT and FPA was noted irrespective of heparin regimen. Increased anti-Xa activity in patients given LMWH prior to thrombolytic treatment had no impact on indices of systemic thrombin activation.The incidence of major bleedings was significantly higher in patients receiving LMWH as compared to patients receiving UFH. However, the occurrence of bleedings was modified after reduction of the initial LMWH dose to 100 anti-Xa units per kg body weight.In conclusion, systemic FXa- and thrombin activity following SK-infusion in patients with acute MI was uninfluenced by conjunctive LMWH treatment.


2018 ◽  
Author(s):  
Honggui Lv ◽  
Li-Jun Xiao ◽  
Dongbing Zhao ◽  
Qi-Lin Zhou

Herein, we realized the first linear-selective hydroarylation of unactivated alkenes and styrenes with organoboronic acids by introducing directing groupon alkenes. Our method is highly efficient and scalable, and provides a modular route to assemble structurally diverse alkylarenes, especially for γ-aryl butyric acid derivatives, which have been widely utilized as chemical feedstocks to access multiple marketed drugs, and biologically active compounds.<br>


2020 ◽  
Vol 5 (443) ◽  
pp. 85-91
Author(s):  
Ibrayev M.K., ◽  
◽  
Takibayeva A.T., ◽  
Fazylov S.D., ◽  
Rakhimberlinova Zh.B., ◽  
...  

This article presents studies on the targeted search for new derivatives of azoles, such as benzthiazole, 3,5-dimethylpyrazole, 1,3,4-oxadiazole-2-thione, 1,3,4-thiadiazole. The possibility of combining in one molecule of the azole ring with other cyclic compounds: the alkaloid cytisine, morpholine, furan and some arenes has been studied. To obtain new compounds, the reactions of bromination, acylation, and interaction with isothiocyanates were studied. Optimal synthesis conditions were studied for all reactions. It was found that the reaction of 4-bromo-3,5-dimethylpyrazole with isothiocyanates, in contrast to the previously written derivatives of anilines, takes a longer time and requires heating the reaction mixture. The combination of a pirasol fragment with halide substituents often results in an enhanced therapeutic effect. The synthesized 2-bromine-N-(6-rodanbenzo[d]thiazole-2-yl)acetamide, due to the alkylbromide group, is an important synth in the synthesis of new benzthiazole derivatives. Its derivatives combine in one molecule the rest of rhodanbenzthiazole with alkaloid cytisine and biogenic amine morpholine and are potentially biologically active compounds, since the molecule structure contains several pharmacophoric fragments: benzthiazole and alkaloid (amine) heterocycles, rhodane and urea groups. The mechanism of formation of 1,3,4-oxadiazole-2-tyons from hydrazides under action on them by carbon disulfide was studied and assumed. It was shown that dithiocarbamates in acidic medium decompose with the release of hydrogen sulfide and the formation of highly reactive isothiocyanate group. Then, intra-molecular cyclization occurs, with the formation of end products - 1,3,4-oxadiazole-2-thions. The structures of the synthesized compounds were studied by 1H and 13C NMR spectroscopy. All synthesized substances are potentially biologically active compounds, since they contain several pharmacophore fragments in their structure.


2020 ◽  
Vol 27 (6) ◽  
pp. 838-853 ◽  
Author(s):  
Madalina Icriverzi ◽  
Valentina Dinca ◽  
Magdalena Moisei ◽  
Robert W. Evans ◽  
Mihaela Trif ◽  
...  

: Among the multiple properties exhibited by lactoferrin (Lf), its involvement in bone regeneration processes is of great interest at the present time. A series of in vitro and in vivo studies have revealed the ability of Lf to promote survival, proliferation and differentiation of osteoblast cells and to inhibit bone resorption mediated by osteoclasts. Although the mechanism underlying the action of Lf in bone cells is still not fully elucidated, it has been shown that its mode of action leading to the survival of osteoblasts is complemented by its mitogenic effect. Activation of several signalling pathways and gene expression, in an LRPdependent or independent manner, has been identified. Unlike the effects on osteoblasts, the action on osteoclasts is different, with Lf leading to a total arrest of osteoclastogenesis. : Due to the positive effect of Lf on osteoblasts, the potential use of Lf alone or in combination with different biologically active compounds in bone tissue regeneration and the treatment of bone diseases is of great interest. Since the bioavailability of Lf in vivo is poor, a nanotechnology- based strategy to improve the biological properties of Lf was developed. The investigated formulations include incorporation of Lf into collagen membranes, gelatin hydrogel, liposomes, loading onto nanofibers, porous microspheres, or coating onto silica/titan based implants. Lf has also been coupled with other biologically active compounds such as biomimetic hydroxyapatite, in order to improve the efficacy of biomaterials used in the regulation of bone homeostasis. : This review aims to provide an up-to-date review of research on the involvement of Lf in bone growth and healing and on its use as a potential therapeutic factor in bone tissue regeneration.


Sign in / Sign up

Export Citation Format

Share Document