scholarly journals Utility of Carbon Fiber Implants in Orthopedic Surgery: Literature Review

2014 ◽  
Vol 4 (1) ◽  
pp. 23-32 ◽  
Author(s):  
Ronald Hillock, MD ◽  
Shain Howard, BS

Carbon fiber (CF) consists of a multitude of unique physical, chemical and biological characteristics that can be utilized and exploited for a number of diverse applications.  Found in aerospace systems, structural elements, energy storage and other products, the most recent application of CF has expanded into the realm of surgical implants. The material properties of CF, historical development and applications and methods of manufacturing are illustrated upon. The various surgical applications of CF are defined, from biocompatibility within the human body and wound healing products to numerous surgical implantations. Keywords: carbon fiber; orthopedics; historical review

2016 ◽  
Vol 39 (3) ◽  
pp. 675-680 ◽  
Author(s):  
Alireza Ashori ◽  
Mohammad Ghofrani ◽  
Mohammad Hadi Rezvani ◽  
Nadir Ayrilmis

2010 ◽  
Vol 133-134 ◽  
pp. 917-922 ◽  
Author(s):  
José Sena-Cruz ◽  
Joaquim Barros ◽  
Mário Coelho

Recently, laminates of multi-directional carbon fiber reinforced polymers (MDL-CFRP) have been developed for Civil Engineering applications. A MDL-CFRP laminate has fibers in distinct directions that can be arranged in order to optimize stiffness and/or strength requisites. These laminates can be conceived in order to be fixed to structural elements with anchors, resulting high effective strengthening systems. To evaluate the strengthening potentialities of this type of laminates, pullout tests were carried out. The influence of the number of anchors, their geometric location and the applied pre-stress are analyzed. The present work describes the carried-out tests and presents and analyzes the most significant obtained results.


2021 ◽  
Vol 28 (3) ◽  
pp. 88-102
Author(s):  
Assim Arif ◽  
Saad Raoof

Textile Reinforced Concrete (TRC) can be used as independent structural elements due to its high loading capacity and proper to product light weight and thin walled structural elements. In this study, the bending behavior of TRC plates that reinforced with dry carbon fiber textile and exposed to high temperatures was experimentally studied under 4-points bending loading. The examined parameters were; (a) number of textile fiber reinforcements layers 1, 2 and 3 layers; (b) level of high temperatures 20°C, 200°C, 300°C, and 400°C. Firstly, the mechanical properties of the cementitious matrix and the tensile properties of TRC coupons at each predefined temperature were evaluated. The results showed that the ultimate tensile stress of the TRC coupons did not affect up to 200°C, however, a significant reduction observed at 300°C and 400°C by 19% and 24% respectively. Regarding the compressive strength and flexural strength of the cementitious matrix, the degradation was not severe until 200°C, while it became critical at 400 °C (23% and 22% respectively). The result of the bending of TRC plates showed that doubling and tripling textile fiber reinforcements layers improved the flexural loading. In general, increasing the level of temperatures resulted in decrease in the flexural capacity of TRC plates. The highest decrease recorded for the specimen reinforced with 1-layer of carbon fiber textile subjected to 400 °C and was 33%.


Orthopedics ◽  
2014 ◽  
Vol 37 (12) ◽  
pp. 825-830 ◽  
Author(s):  
David J. Hak ◽  
Cyril Mauffrey ◽  
David Seligson ◽  
Bennie Lindeque

2021 ◽  
Vol 9 (1) ◽  
pp. 1-5
Author(s):  
Irina Mayackaya ◽  
Batyr Yazyev ◽  
Anastasia Fedchenko ◽  
Denis Demchenko

Reinforced concrete elements of structures in the form of columns, beams, ceilings are widely used in the construction of buildings and structures of industrial and civil construction. In most cases, the columns serve as supports for other building elements, for example, crossbars, slabs, girders, beams. One of the cycles of the work of reinforced concrete structures is the state of their repair and reconstruction, including the stages of strengthening the elements. There is a problem of strengthening of reinforced concrete columns. The article deals with the issue of reinforcing columns and other structural elements having a cylindrical surface, with polymeric composite materials in the form of carbon fiber lamellae. The use of composite materials allows to increase the service life and strength of reinforced concrete structures used in construction.


Author(s):  
Jose M. Jara ◽  
Bertha A. Olmos ◽  
Guillermo Martínez

This chapter presents the studies conducted to retrofit an existing bridge in a seismic prone area of Mexico. The Motín de Oro II Bridge was built in the 1970s with a continuous box girder superstructure and wall-type substructure. From the 1970s to nowadays, the design truck loads in Mexico have been substantially incremented and many bridges built in that period have required to be evaluated and, in some cases, rehabilitated and retrofitted. Firstly, the study presents the results of visual inspections of all parts of the bridge and a description of the preliminary studies conducted to determine the material properties, to evaluate the river flow characteristics and to calculate the scour depth. Secondly, the chapter discusses the initial structural analyses of the bridge subjected to the original gravitational and seismic loads and to the current loads before the intervention. These analyses allow to select the structural elements that require to be retrofitted and the best strategy to follow. Finally, the study presents results of the numerical retrofitted model and the experimental assessment of the dynamic properties based on ambient vibration measurements. Additionally, the scour protection and the general construction procedure are also described.


Cellulose ◽  
2020 ◽  
Vol 27 (12) ◽  
pp. 6811-6829 ◽  
Author(s):  
Mátyás Báder ◽  
Róbert Németh ◽  
Jakub Sandak ◽  
Anna Sandak

Abstract Pleating is an optimal way to increase bendability of wood used in diverse industrial applications. It results in the excessive buckling of cell walls and modifications of constitutive polymers. However, thoughtful understanding of the physical–chemical mechanisms of that modification process is very limited. The main purpose of the present study was to identify changes in functional groups of wood polymers induced by longitudinal compression. Four types of wood samples prepared from beech and sessile oak (untreated, steamed, longitudinally compressed and fixated for 1 min as well as longitudinally compressed and fixated for 18 h) were assessed by infrared spectroscopy. The spectra interpretation revealed that changes can be observed in hydroxyl as well as in carbon–oxygen single and carbon-hydrogen functional groups of polysaccharides and lignin. Beech wood seems to be more susceptible to investigated modification processes as compared to oak. Detailed interpretation of infrared spectra allows identification of changes in the hygroscopicity of wood as well as alterations in the linkage between structural elements in the polymer matrix of wood induced by the applied treatments. Graphic Abstract


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Jakub Kupecki

This paper provides a review of modelling techniques applicable for system-level studies to account for physical, chemical, and material properties of solid oxide fuel cells. Functionality of 0D to 3D models is discussed and selected examples are given. Author provides information on typical length scales in evaluation of power systems with solid oxide fuel cells. In each section, proper examples of previous studies done in the field of 0D–3D modelling are recalled and discussed.


Sign in / Sign up

Export Citation Format

Share Document