scholarly journals Effectiveness of the arbuscular mycorrhizal fungi use in the cherimoya (Annona cherimola Mill.) seedlings growth

2017 ◽  
Vol 66 (2) ◽  
Author(s):  
William Viera ◽  
Diego Campaña ◽  
Salomé Castro ◽  
Wilson Vásquez ◽  
Pablo Viteri ◽  
...  

Cherimoya (Annona cherimola Mill.) is native to the inter-Andean valleys of southern Ecuador and northern Peru. In Ecuador, the yield of this fruit crop is low, mainly due to agricultural management problems and poor fertilization. This research aims to assess the effect of native mycorrhizal fungi on seedling growth of cherimoya (cultivar 'Cangahua'). Sampling of soil and roots was carried out in 14 production sites of cherimoya. Soils that obtained the largest number of spores and greatest percentage of mycorrhizal colonization were those collected in Tumbabiro (plot 10), Gonzanamá, Paute and San Francisco de Atahualpa. These soils were used to propagate the inoculums in trap plants (Sorghum vulgare) and subsequently, they were used to inoculate the seeds and seedlings of cherimoya. There was no statistical difference to jointly analyze the results obtained in the inoculated seeds and seedlings. However, independently, the inoculum coming from the soil of Tumbabiro obtained the best results by doubling the content of total phosphorus and 47% increase in dry matter in cherimoya seedlings compared to control.

2016 ◽  
Vol 40 (3) ◽  
pp. 203 ◽  
Author(s):  
Bambang Suwignyo ◽  
Bela Putra ◽  
Nafiatul Umami ◽  
Cahyo Wulandari ◽  
Ristianto Utomo

This study aimed to determine the effect of arbuscular mycorrhizal fungi (AMF) and phosphate (P) fertilizer on the nutrient content, phosphate uptake and in vitro digestibility of alfalfa (Medicago sativa L.).The research was conducted at green house of Forage and Pastures Science Laboratory, Faculty of Animal Science Universitas Gadjah Mada. The experiment was arranged in Completely Randomized Design using 3x4 factorial patterns with four replications. The first factor was dosage of phosphate fertilizer SP 36 (0, 60, and 120 kg/ha). Second factor was the dosage of AMF (0, 0.8, 1.6, and 2.4kg/ha). The variable measured was nutrient contents (crude protein, dry matter, and organic matter), total P uptake and dry matter and organic matter in vitro digestibility. The results showed that the interaction of AMF and P fertilizer had no significant effect on crude protein and total P uptake, but highly significant effect on the parameters of dry matter, organic matter and dry matter and organic matter in vitro digestibility. 


2018 ◽  
Vol 16 (2) ◽  
pp. 10
Author(s):  
A T Aryanto ◽  
P DMH Karti ◽  
I Prihantoro

<p>ABSTRAK<br /><br />Pengembangan hijauan membutuhkan pupuk ramah lingkungan. Fungi Mikoriza Arbuskular (FMA) adalah asosiasi yang melibatkan jamur dan akar yang dianggap sebagai pupuk hayati untuk meningkatkan produktivitas tanaman dan toleran dari kondisi lingkungan. Ketersediaan FMA masih jarang, sehingga dibutuhkan produksi massal untuk dapat mendukung pengembangan hijauan. Tujuan dari penelitian ini adalah untuk menghasilkan inokulum AMF menggunakan sistem hidroponik dalam jumlah besar secara efektif. Penelitian ini dibagi menjadi 2 tahap. Rancangan Acak Kelompok Faktorial yang digunakan pada tahap pertama dengan faktor A adalah jenis sistem irigasi (Manual, Drip dan Nutrien Film Technique System (NFT)) dan B adalah larutan nutrisi (AB Mix dan Hyponex Red) dengan Pueraria javanica sebagai tanaman inang. Rancangan Acak Lengkap (RAL) dilakukan pada tahap kedua dengan menggunakan produksi inokulum FMA dari tahap pertama dengan Brachiaria decumbens var Mullato sebagai tanaman inang. Hasil penelitian menunjukkan bahwa interaksi antara sistem NFT dan AB Mix signifikan (P&lt;0,05) menghasilkan bahan kering tajuk, bahan kering akar dan spora paling tinggi. Semua tipe sistem irigasi dan nutrisi menunjukkan infeksi akar&gt;96%. FMA inokulasi di Brachiaria decumbes var Mulato signifikan(P &lt;0,05) pada bahan kering tajuk, kandungan N, kandungan P dan serapan P.</p><p><br />Kata kunci: Brachiaria decumbes, FMA, sistem Drip, sistem NFT, Pueraria javanica,</p><p><br />ABSTRACT</p><p>Forage mass production development requires environmental friendly fertilizer. Arbuscular Mycorrhizal Fungi (AMF) are mutualitic symbioses between plant and fungi that considered as natural biofertilizer with benefit to improve plant productivitity and environment stress tolerance. The availability of AMF is still low, so it takes mass production to be able to support forage development. The aim of the research was to produce AMF inoculum using hydroponic system in large quantities. This research divided into 2 stages. The factorial randomized block design was used for the first stage with A factor was type of irrigation system (Manual, Drip and Nutrient Film Technique System (NFT)) and B was the nutritional solution (AB Mix and Hyponex Red) using Pueraria javanica as host plant. Completely randomized design was conducted for the second stage by using AMF inoculum production from first stage using Brachiariadecumbens var Mullat as host plant. The best result was a combination beetwen NFT system and AB Mix significantly (P&lt;0.05) produce highest shoot dry matter, root dry matter and spore production. All type of irrigation system and nutrition showed root infection &gt;96%. AMF inoculation in Brachiariadecumbes var Mulato was significant different (P&lt;0.05) on shoot dry matter, N content, P content and P uptake.</p><p><br />Keywords: AMF, B. decumbes, Drip system, NFT system, P. javanica,</p>


2017 ◽  
Vol 63 (2) ◽  
pp. 67-73
Author(s):  
Mazen Ibrahim

Abstract A pot experiment was conducted to study the extent of changes occurring in the nutrients, chlorophyll and protein of plants grown in cotton/alfalfa mixed culture as affected by inoculation with indigenous arbuscular mycorrhizal fungi (AMF). The experiment consisted of mycorrhizal treatments (with and without AMF inoculation) and three planting patterns (cotton monoculture, alfalfa monoculture, cotton/alfalfa mixed culture). Arbuscular mycorrhizal (AM) inoculum previously isolated from a rhizospheric soil of cotton, was a mixture of Glomus intraradices, G. viscosum, and G. mosseae. Results showed that total chlorophyll and protein concentrations, and nutrients content were higher in AM cotton plants compared with the non-AM control. Mixed culture had a positive effect on all the above parameters in cotton shoot. The highest values were noted in AM plants in the mixed culture. Improved chemicals and biochemical constituents in cotton led to an increase in dry matter production. The highest dry matter was observed in the AM mixed culture, and was significantly higher by 1.4 times than that of non-AM monoculture.


Author(s):  
Anita Bueno de Camargo Nunes ◽  
Orivaldo José Saggin Júnior ◽  
Eliane Maria Ribeiro da Silva ◽  
Flávio Araújo Pinto ◽  
Jessé Valentim dos Santos ◽  
...  

Abstract: The objective of this work was to evaluate the effect of the use of steel slag as a soil acidity corrective and of mycorrhizal fungi associated with phosphate fertilization on corn plants. The study was performed in a greenhouse, using 3-kg pots with a Typic Haplorthox, in a 4x5x2 factorial arrangement, with four acidity correction treatments (C1, correction with dolomitic limestone at a dose of 4 Mg ha-1; C2, correction with steel slag at a dose of 4 Mg ha-1; C3, correction with a 1:1 mixture of 2 Mg ha-1 dolomitic limestone and 2 Mg ha-1 steel slag; and C4, control, without pH correction), five phosphorus doses (0, 42, 95, 213, and 480 mg dm-3), and the presence or absence of two arbuscular mycorrhizal fungi (Rhizophagus clarus and Gigaspora margarita), with five replicates. Steel slag was efficient in correcting soil pH and providing Ca and Mg for the plants; therefore, it could replace limestone. The inoculation with R. clarus and G. margarita, associated with P doses of 42, 95, and 213 mg dm-3, improved the development of corn plants after 45 days, resulting in greater plant height, stem diameter, leaf area, and shoot and root dry matter.


2009 ◽  
Vol 1 (2) ◽  
pp. 381-386 ◽  
Author(s):  
B. Karthikeyan ◽  
M. M. Joe ◽  
A. J. Cheruth

An investigation has been made about the response of vesicular arbuscular mycorrhizal fungi of G. fasciculatum on some medicinal plants. Medicinal plants species selected for the study are Ocimum sanctum, Catharanthus roseus, Coleus forskholii and Cymbopogon flexuosus. The percentage of VAM association is 85 and the intensity of formation of vesicles and arbuscules  are 70% and 30%, respectively in VAM inoculated C. roseus plants. The total dry matter production (shoot and root dry wt), protein and total chlorophyll contents are seen to increase in VAM inoculated plants. The percentage of increase is more in C. roseus, followed by Cymbopogon flexosus when compared to control plants. Keywords: Ocimum sanctum, Coleus forskholii, Cymbopogon flexosus, Catharanthus roseus, VAM fungi.© 2009 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.DOI: 10.3329/jsr.v1i2.1675 


1985 ◽  
Vol 105 (3) ◽  
pp. 631-647 ◽  
Author(s):  
J. G. Buwalda ◽  
D. P. Stribley ◽  
P. B. Tinker

SUMMARYThe effects of inoculation with the vesicular-arbuscular mycorrhizal fungus Olomics mosseae(Nicolson & Gerdemann) Gerdemann and Trappe, fumigation of soil with methyl bromide, and addition of superphosphate (up to 60 kg P/ha) on growth and phosphorus nutrition of spring wheat (Triticum aestivum L. cv. Highbury) were investigated in two experiments (in 1980 and 1981 respectively) on plots that had been fallowed and recently limed.Fumigation severely reduced natural levels of infection, and slightly reduced yield of above-ground dry matter in both years. In 1981 a decrease in grain yield of about 25% was accompanied by an increase in growth of straw. Plants on fumigated plots contained appreciable amounts of bromine in shoot tissue.Inoculation increased and added P decreased infection in all treatments. In 1980 inoculation had little effect on above-ground dry matter, but it increased concentration of P in shoots especially on plots without added P. In 1981 added inoculum increased yield of grain on fumigated plots by about 0·75 t/ha at all levels of added P, but had little effect on non-fumigated plots, though responses in grain production to added P were similar with and without fumigation. Increases in yield resulting from inoculation were generally accompanied by increases in concentration of P in plant tissue.Winter barley was sown on the plots after their use for spring wheat, without further application of the fumigation, inoculation or phosphorus treatments used in those experiments, to determine any residual effects on mycorrhizal infection and on growth. The levels of mycorrhizal infection on non-fumigated, inoculated plots were relatively constant in successive crops, although numbers of propagules of mycorrhizal fungi increased significantly with time for all treatments. Infection levels on fumigated and non-inoculated plots increased in successive crops, so that the relative effects of fumigation and of inoculation declined with time.The effects of inoculation on infection levels persisted for longer than those on yields, suggesting that maximum effects of mycorrhizal infection on growth did not require the maximum levels of infection found in the roots. Harvest yields continued to respond to applied phosphorus even when uniformly high levels of infection had been established, suggesting that the ability of the root system to absorb phosphate was not greatly increased by mycorrhizal infection.


Sign in / Sign up

Export Citation Format

Share Document