scholarly journals A comparison of two open-source crop simulation models for a potato crop

2020 ◽  
Vol 38 (3) ◽  
pp. 382-387
Author(s):  
Diego Quintero ◽  
Eliécer Díaz

An open-source model is a model that makes it possible to modify the source code. This tool can be a great advantage for the user since it allows changing or modifying some of the background theory of the model. World Food Studies (WOFOST) and AquaCropOS open-source crop models were compared using field recorded data. Both models are free open-source tools that allow evaluating the impacts of climate and water on agriculture. The objective of this research was to assess the model’s efficiency in simulating the yield and above-ground biomass formation of a potato crop on the Cundiboyacense plateau. WOFOST simulates biomass accumulation in the crop organs using partitioning of assimilates to establish the biomass fraction that turns into yield. AquaCropOS simulates total above-ground biomass accumulation using crop water productivity (WP) and considers the Harvest Index (HI) to calculate yield formation. Crop modules for both models were built using information recorded in previous studies by other authors; those works performed a physiological and phenological characterization of some potato varieties. It was found that the WOFOST model simulates yield formation better than AquaCropOS; despite that, AquaCropOS simulates total above-ground biomass better than WOFOST. However, AquaCropOS was as efficient as WOFOST in simulating yield formation.

2018 ◽  
Vol 156 (5) ◽  
pp. 628-644 ◽  
Author(s):  
E. Pohanková ◽  
P. Hlavinka ◽  
M. Orság ◽  
J. Takáč ◽  
K. C. Kersebaum ◽  
...  

AbstractIn the current study, simulations by five crop models (WOFOST, CERES-Barley, HERMES, DAISY and AQUACROP) were compared for 7–12 growing seasons of spring barley (Hordeum vulgare) at three sites in the Czech Republic. The aims were to compare how various process-based crop models with different calculation approaches simulate different values of transpiration (Ta) and evapotranspiration (ET) based on the same input data and compare the outputs of these simulations with reference data. From the outputs of each model, the water use efficiency (WUE) from Ta (WUETa) and from actual ET (WUEETa) was calculated for grain yields and above-ground biomass yield. The results of the first part of the study show that the model with the Penman approach for calculating ET simulates lower actual ET (ETa) sums, at an average of 250 mm during the growing season, than other models, which use the Penman–Monteith approach and simulate 330 mm on average during the growing season. In the second part of the current study, WUE reference values in the range 1.9–2.4 kg/m3were calculated for spring barley and grain yield. Values of WUETa/WUEETacalculated from the outputs of individual models for grain yields and above-ground biomass yields ranged from 2.0/1.0 to 5.9/3.8 kg/m3with an average value of 3.2/2.0 kg/m3and from 3.9/2.1 to 10.5/6.8 kg/m3with an average value of 6.5/4.0 kg/m3, respectively. The results confirm that the average values of all models are nearest to actual values.


2003 ◽  
Vol 184 (1-3) ◽  
pp. 93-104 ◽  
Author(s):  
Michael S. Watt ◽  
Peter W. Clinton ◽  
David Whitehead ◽  
Brian Richardson ◽  
Euan G. Mason ◽  
...  

Author(s):  
Ramesh Kumar ◽  
R.S. Yadav ◽  
N.D. Yadava ◽  
Amit Kumawat ◽  
Vinay Nangia ◽  
...  

The study on “Evaluation of Cropsyst model for yield and water productivity of clusterbean” was conducted on farmers field during kharif 2012 at village Mainawali in Hanumangarh district of Rajasthan. The soils of the area are alluvial and calcareous in nature formed under arid and semi arid climate. The soils of site are brown to greyish brown and dark grey in colour, besides being calcareous and slightly alkaline in reaction having 67.7, 11.1 and 21.0 % of sand, clay and silt, respectively in 0-15 cm soil depth with pH 8.09 and low soil organic matter content. The simulate yield of clusterbean were closer to the observed clusterbean yield. Simulations of early clusterbean above ground biomass development matched the field data reasonably well. Final above ground biomass, however, was over estimated by the model. The total water applied in clusterbean was 405.8 mm out of this 326.7 mm consumed in ET. Thus, ET constituted 81% of total water applied and deep drainage constituted 13% and rest 6% stored as residual soil moisture.


2016 ◽  
Vol 27 (6) ◽  
pp. 1313-1320 ◽  
Author(s):  
Vittoria Coletta ◽  
Giuliano Menguzzato ◽  
Gaetano Pellicone ◽  
Antonella Veltri ◽  
Pasquale Antonio Marziliano

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
JAMES G. KAIRO ◽  
MICHAEL NJOROGE GITHAIGA ◽  
KIPLAGAT KOTUT ◽  
FRANCIS KARIUKI

Abstract. Githaiga MN, Kotut K, Kariuki F, Kairo JG. 2019. Structure and biomass accumulation of natural mangrove forest at Gazi Bay, Kenya. Bonorowo Wetlands 9: 18-32. The goal of this study was to determine the forest structure and estimate biomass accumulation above and below ground in the mangrove forest of Gazi Bay. The western, middle, and eastern forest blocks of the Gazi Bay mangrove forest were investigated for forest structure, whereas the western forest block was determined for biomass accumulation. To calculate below-ground biomass accumulation, in-growth cores of 80 cm long, 20 cm broad, and 60 cm deep were employed. Above-ground biomass accumulation was calculated using data on tree height and stem diameter at breast height (DBH-130). Leaf phenology was observed by tagging shoots. At the start, environmental variables were measured every four months for a year across four mangrove species zones. The linear regeneration sampling approach was used to determine the composition and distribution pattern of natural regeneration (LRS). Salinity revealed a strong negative connection with above-ground biomass accumulation among the soil environment characteristics studied. Sonneratia alba had the highest biomass accretion rate of 10.5 1.9 t ha-1 yr-1 among the four forest zones. Rhizophora mucronata (8.5 0.8 t ha-1 yr-1), Avicennia marina (5.2 1.8 t ha-1 yr-1), and Ceriops tagal (2.6 1.5 t ha-1 yr-1) were the next most abundant species. Above-ground and below-ground biomass accumulation differed significantly among zones (F (3, 8) = 5.42, p = 0.025) and (F (3, 8) = 16.03, p = 0 001), respectively. There was a significant difference in total biomass accumulation across zones (F (3, 8) =15.56, p = 0.001). For the entire forest, a root : shoot biomass accumulation ratio of 2 : 5 was calculated. This study's findings provide more accurate estimates of mangrove carbon capture and storage, which can be used in carbon credit discussions in the emerging carbon market.


2008 ◽  
Vol 7 ◽  
pp. 109-114
Author(s):  
O.Y. Lokot ◽  
Y.P. Кornuta

The presowing treatment of flax with the microbic drug of complex action microgumin provides essential increase of productivity of culture. Such agricultural method promotes dynamics of above-ground biomass accumulation, improvement of biometric parameters of sowings and morphological features of plants.


2019 ◽  
Vol 432 ◽  
pp. 376-386 ◽  
Author(s):  
Sang Minh Phan ◽  
Huong Thuy Thi Nguyen ◽  
Trung Kim Nguyen ◽  
Catherine Lovelock

Author(s):  
Naiwen Xue Tianqing Du

The application of catch crops as a green manure can enhance soil fertility owing to improving soil nutrients. We conducted one year field experiment to evaluate the effect of catch crops [Rapeseed (Brassica napus L.) under different sowing rates and Soy bean (Glycine max L.)] with biological organic fertilizer 1,500 kg/ha on wheat yield and soil nutrients. The green manures were sown on 3th July 2015 during summer fallow. At the beginning, there were five treatments as follows: R1 (Rapeseed and sowing rate was 7.5 kg/ha); R2 (Rapeseed and sowing rate was 15 kg/ha); R3 (Rapeseed and sowing rate was 22.5 kg/ha); S (Soy bean and sowing rate was 105 kg/ha); C (Control was bare field). Every green manure treatment was split into two treatments on 27th September 2015. One treatment we turned the above ground biomass of green manure into the soil. And another treatment we harvested the above ground biomass of green manure. The above ground biomass turned into soil treatments were G1, G3, G5 and G7. The above ground biomass harvested treatments were G2, G4, G6 and G8. The treatment C was still the bare field. Soil samples were taken twice to measure soil moisture and nutrients at two stages. One stage was in autumn before winter wheat sowing and another stage was in next year summer after wheat harvest. The significantly highest 1,000-grain weight and grain yield belonged to the treatment C, which were 10.69%-36.87% and 16.86%-72.5% higher than that of the green manures treatments. After wheat harvest, the 0-20 cm soil available N and total N of G7 were 51.40%-20.45% and 95.12%-125.35% significantly better than that of other treatments. The significantly highest soil total P of 0-20 cm belonged to G3 after wheat harvest, which was 25%-45.83% better than other treatments. Before wheat sowing, the treatment C kept the significantly lowest soil available K of five layers. The 0-20 cm and 20-40 cm soil organic matter of the treatment S was 40.28%-71.12% and 53.92%-122.67% significantly higher than other treatments before wheat sowing. Therefore, growing rapeseed and soy bean during summer fallow in this region significantly reduced 1,000-grain weight and grain yield of subsequent winter wheat. But the incorporation of green manures improved the soil nutrients to some extent.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Xiuliang Jin ◽  
Simon Madec ◽  
Dan Dutartre ◽  
Benoit de Solan ◽  
Alexis Comar ◽  
...  

Total above-ground biomass at harvest and ear density are two important traits that characterize wheat genotypes. Two experiments were carried out in two different sites where several genotypes were grown under contrasted irrigation and nitrogen treatments. A high spatial resolution RGB camera was used to capture the residual stems standing straight after the cutting by the combine machine during harvest. It provided a ground spatial resolution better than 0.2 mm. A Faster Regional Convolutional Neural Network (Faster-RCNN) deep-learning model was first trained to identify the stems cross section. Results showed that the identification provided precision and recall close to 95%. Further, the balance between precision and recall allowed getting accurate estimates of the stem density with a relative RMSE close to 7% and robustness across the two experimental sites. The estimated stem density was also compared with the ear density measured in the field with traditional methods. A very high correlation was found with almost no bias, indicating that the stem density could be a good proxy of the ear density. The heritability/repeatability evaluated over 16 genotypes in one of the two experiments was slightly higher (80%) than that of the ear density (78%). The diameter of each stem was computed from the profile of gray values in the extracts of the stem cross section. Results show that the stem diameters follow a gamma distribution over each microplot with an average diameter close to 2.0 mm. Finally, the biovolume computed as the product of the average stem diameter, the stem density, and plant height is closely related to the above-ground biomass at harvest with a relative RMSE of 6%. Possible limitations of the findings and future applications are finally discussed.


Sign in / Sign up

Export Citation Format

Share Document