scholarly journals Ensuring the Stability of Agricultural Transport and Technological Machines Equipped with Ultra-Low Pressure Tires during Braking

2020 ◽  
Vol 30 (4) ◽  
pp. 609-623
Author(s):  
Umar Sh. Vakhidov ◽  
Andrey A. Kurkin ◽  
Lev S. Levshunov ◽  
Iuri I. Molev ◽  
Dmitriy N. Proshin ◽  
...  

Introduction. Improving the efficiency of agricultural operations and off-road logistics require new highly efficient non-road machinery with low pressure on road surface. The versatility of the use of this machinery imposes additional requirements on its design, including those related to road traffic safety on public roads. Changes in brake design are required to ensure safe braking performance when larger diameter wheels are used for the reason that to produce standard braking force according to the technical regulations for the safety of wheeled vehicles, requires more braking torque when using larger diameter wheels. Materials and Methods. The article proposes a model for calculating the braking parameters of transport and technological agricultural machines equipped with ultra-low pressure wheels. The model differs from those used earlier in that its output parameter is not the braking efficiency, but the time difference between the front and rear axle locks. Results. Fulfilling the condition of the front axle advance locking ensures the stability of the tractor motion during emergency braking that has a positive effect on road traffic safety. The results of the study suggest that to ensure the safe motion of the machines equipped with ultra-low pressure tires on public roads, it is necessary that the ratio of the distance from the center of mass to the front axle is at least not less than the distance from the center of mass to the road surface. Discussion and Conclusion. The proposed mathematical model has shown its adequacy. The obtained mathematical dependencies allow us to justify different technical solutions for ensuring safe road movement of transport and technological agricultural machines equipped with ultra-low pressure tires. Thus, the maximum permissible height of the center of mass can be assumed to be equal to 90% of the distance from the location of the center of mass of an agricultural transport and technological machine to its front (controlled) axis.

2017 ◽  
Vol 24 (s1) ◽  
pp. 16-24 ◽  
Author(s):  
Marcin Budzyński ◽  
Dawid Ryś ◽  
Wojciech Kustra

Abstract Port towns are strategic places from the point of view of transport systems. They form integration junctions for various transport branches , apart from the traditional - road and railway ones , also for water( sea) transport which is active there. Moreover, air transport comes also into consideration , whose efficient functioning must be connected with good accessibility, that concerns sea transport as well. Efficient and safe servicing the ports is crucial for their functioning. Problems associated with the overloading of lorries, which leads to degradation of road surface structure , observed in Gdynia, are discussed as an example in this paper. Problems of road traffic safety (RTS) are presented in this paper on the example of Gdańsk. The two issues: the road traffic safety and road surface degradation constitute only some transport problems of port towns , but they are very important, from the point of view of their specificity, for integration junctions of all the transport branches for people and goods. However, in discussing selected aspects of transport in port towns it is necessary to refer to the managing of integrated transport system with taking into account its traffic safety aspects.


Author(s):  
Denys Popelysh ◽  
Yurii Seluk ◽  
Sergyi Tomchuk

This article discusses the question of the possibility of improving the roll stability of partially filled tank vehicles while braking. We consider the dangers associated with partially filled tank vehicles. We give examples of the severe consequences of road traffic accidents that have occurred with tank vehicles carrying dangerous goods. We conducted an analysis of the dynamic processes of fluid flow in the tank and their influence on the basic parameters of the stability of vehicle. When transporting a partially filled tank due to the comparability of the mass of the empty tank with the mass of the fluid being transported, the dynamic qualities of the vehicle change so that they differ significantly from the dynamic characteristics of other vehicles. Due to large displacements of the center of mass of cargo in the tank there are additional loads that act vehicle and significantly reduce the course stability and the drivability. We consider the dynamics of liquid sloshing in moving containers, and give examples of building a mechanical model of an oscillating fluid in a tank and a mathematical model of a vehicle with a tank. We also considered the method of improving the vehicle’s stability, which is based on the prediction of the moment of action and the nature of the dynamic processes of liquid cargo and the implementation of preventive actions by executive mechanisms. Modern automated control systems (anti-lock brake system, anti-slip control systems, stabilization systems, braking forces distribution systems, floor level systems, etc.) use a certain list of elements for collecting necessary parameters and actuators for their work. This gives the ability to influence the course stability properties without interfering with the design of the vehicle only by making changes to the software of these systems. Keywords: tank vehicle, roll stability, mathematical model, vehicle control systems.


Author(s):  
Niklas Grabbe ◽  
Michael Höcher ◽  
Alexander Thanos ◽  
Klaus Bengler

Automated driving offers great possibilities in traffic safety advancement. However, evidence of safety cannot be provided by current validation methods. One promising solution to overcome the approval trap (Winner, 2015) could be the scenario-based approach. Unfortunately, this approach still results in a huge number of test cases. One possible way out is to show the current, incorrect path in the argumentation and strategy of vehicle automation, and focus on the systemic mechanisms of road traffic safety. This paper therefore argues the case for defining relevant scenarios and analysing them systemically in order to ultimately reduce the test cases. The relevant scenarios are based on the strengths and weaknesses, in terms of the driving task, for both the human driver and automation. Finally, scenarios as criteria for exclusion are being proposed in order to systemically assess the contribution of the human driver and automation to road safety.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lei Lin ◽  
Feng Shi ◽  
Weizi Li

AbstractCOVID-19 has affected every sector of our society, among which human mobility is taking a dramatic change due to quarantine and social distancing. We investigate the impact of the pandemic and subsequent mobility changes on road traffic safety. Using traffic accident data from the city of Los Angeles and New York City, we find that the impact is not merely a blunt reduction in traffic and accidents; rather, (1) the proportion of accidents unexpectedly increases for “Hispanic” and “Male” groups; (2) the “hot spots” of accidents have shifted in both time and space and are likely moved from higher-income areas (e.g., Hollywood and Lower Manhattan) to lower-income areas (e.g., southern LA and southern Brooklyn); (3) the severity level of accidents decreases with the number of accidents regardless of transportation modes. Understanding those variations of traffic accidents not only sheds a light on the heterogeneous impact of COVID-19 across demographic and geographic factors, but also helps policymakers and planners design more effective safety policies and interventions during critical conditions such as the pandemic.


2018 ◽  
Vol 170 ◽  
pp. 05009
Author(s):  
Artur Petrov ◽  
Daria Petrova

The article considers the results of research of accident rate heterogeneity in cities-administrative centers of subjects of Russian Federation (2015, 2016). Using methods of ranging, regression analysis and spatial differentiation these cities were classified into 5 classes on the basis of relative disadvantage in road traffic safety sphere. For each group of cities differentiated recommendations on financing regional road traffic safety programs were suggested.


Author(s):  
Olasunkanmi Oriola Akinyemi ◽  
Hezekiah O Adeyemi ◽  
Olusegun Jinadu

Abstract Analysis of road traffic accidents revealed that most accidents are as a result of drivers’ errors. Over the years, active safety systems (ASS) were devised in vehicle to reduce the high level of road accidents, caused by human errors, leading to death and injuries. This study however evaluated the impacts of ASS inclusions into vehicles in Nigeria road transportation network. The objectives was to measure how ASS contributed to making driving safer and enhanced transport safety. Road accident data were collected, for a period of eleven years, from Lagos State Ministry of Economic Planning and Budget, Central Office of Statistics. Quantitative analysis of the retrospective accident was conducted by computing the proportion of yearly number of vehicles involved in road accident to the total number of vehicles for each year. Results of the analysis showed that the proportion of vehicles involved in road accidents decreased from 16 in 1996 to 0.89 in 2006, the injured persons reduced from 15.58 in 1998 to 0.3 in 2006 and the death rate diminished from 4.45 in 1998 to 0.1 in 2006. These represented 94.4 %, 95 % and 95 % improvement respectively on road traffic safety. It can therefore be concluded that the inclusions of ASS into design of modern vehicles had improved road safety in Nigeria automotive industry.


Sign in / Sign up

Export Citation Format

Share Document