scholarly journals Desarrollo de los gametofitos de especies mexicanas de Gleicheniaceae

2017 ◽  
Vol 65 (3) ◽  
pp. 939
Author(s):  
Norberto Farfán-Santillán ◽  
Aniceto Mendoza-Ruiz ◽  
Blanca Pérez-García ◽  
Ernesto Velázquez-Montes

In Mexico, the Gleicheniaceae family is represented by different species such as Dicranopteris flexuosa, Diplopterygium bancroftii, Gleichenella pectinata, Sticherus bifidus, S. brevipubis, S. palmatus and S. underwoodianus. Currently, few studies have described the gametophytes of some species in this family, and our objective was to contribute to the knowledge, and to describe and compare different aspects of their germination, gametophyte development, and to determine if the prothallus characters are useful for taxonomic delimitations in the group. For this purpose, specimens and spores of each taxon were collected in the field, spores were sown in Petri dishes containing agar and Thompson nutrient medium, and grown in a plant growing chamber under controlled conditions of light (12 hr light/darkness), (50 %) humidity, and temperature (18 °C night, 25 °C day). Additionally, observations of fresh materials were made and photomicrographs were taken using both optical and scanning electron microscopes. Our observations allowed distinguishing two types of germination Gleichenia and Cyathea; and three types of prothallial development Marattia, Osmunda and Drynaria. Gametangia presented more than three cells, and this is considered a primitive feature by other authors. As some variations in the germination type were observed and have not previously been reported in the literature for this family, and because of the heterogenity in the patterns of the prothallial cell development, and gametangia of more than four cells, it is important to broaden the study to other species, in order to determine the taxonomic value of the morphological characters of the gametophyte, as well as to determine if these variations are present in other species of the family.

1978 ◽  
Vol 115 (1) ◽  
pp. 1-19 ◽  
Author(s):  
Minoo Hojjatzadeh

SummaryTwenty-three species of the Family Discoasteraceae Vekshina, 1959 recovered from 18 samples of the Blue Clay at Fort Chambray, Gozo, and 31 samples from Fomm-Ir-Rih Bay, Malta, have been studied under light and scanning electron microscopes. Fourteen Middle Miocene species are reviewed, their stratigraphical ranges and importance as marker species discussed. Nine species are described as new. On the basis of the discoaster species present, a Middle Miocene age (NN.6 Discoaster exilis Zone – NN.7 Discoaster kugleri Zone) for the Blue Clay in Malta and Gozo is suggested.


1985 ◽  
Vol 63 (9) ◽  
pp. 2077-2082 ◽  
Author(s):  
J. Rusek

Blissia glabra, a new genus and species from the Mackenzie River Delta south of Inuvik, N.W.T., is described. The new genus is related to Tetracanthella Schött, 1891 (Isotomidae). Morphological characters as seen with light and scanning electron microscopes are described and figured.


Author(s):  
Klaus-Ruediger Peters

A new generation of high performance field emission scanning electron microscopes (FSEM) is now commercially available (JEOL 890, Hitachi S 900, ISI OS 130-F) characterized by an "in lens" position of the specimen where probe diameters are reduced and signal collection improved. Additionally, low voltage operation is extended to 1 kV. Compared to the first generation of FSEM (JE0L JSM 30, Hitachi S 800), which utilized a specimen position below the final lens, specimen size had to be reduced but useful magnification could be impressively increased in both low (1-4 kV) and high (5-40 kV) voltage operation, i.e. from 50,000 to 200,000 and 250,000 to 1,000,000 x respectively.At high accelerating voltage and magnification, contrasts on biological specimens are well characterized1 and are produced by the entering probe electrons in the outmost surface layer within -vl nm depth. Backscattered electrons produce only a background signal. Under these conditions (FIG. 1) image quality is similar to conventional TEM (FIG. 2) and only limited at magnifications >1,000,000 x by probe size (0.5 nm) or non-localization effects (%0.5 nm).


Author(s):  
K. Ogura ◽  
A. Ono ◽  
S. Franchi ◽  
P.G. Merli ◽  
A. Migliori

In the last few years the development of Scanning Electron Microscopes (SEM), equipped with a Field Emission Gun (FEG) and using in-lens specimen position, has allowed a significant improvement of the instrumental resolution . This is a result of the fine and bright probe provided by the FEG and by the reduced aberration coefficients of the strongly excited objective lens. The smaller specimen size required by in-lens instruments (about 1 cm, in comparison to 15 or 20 cm of a conventional SEM) doesn’t represent a serious limitation in the evaluation of semiconductor process techniques, where the demand of high resolution is continuosly increasing. In this field one of the more interesting applications, already described (1), is the observation of superlattice structures.In this note we report a comparison between secondary electron (SE) and backscattered electron (BSE) images of a GaAs / AlAs superlattice structure, whose cross section is reported in fig. 1. The structure consist of a 3 nm GaAs layer and 10 pairs of 7 nm GaAs / 15 nm AlAs layers grown on GaAs substrate. Fig. 2, 3 and 4 are SE images of this structure made with a JEOL JSM 890 SEM operating at an accelerating voltage of 3, 15 and 25 kV respectively. Fig. 5 is a 25 kV BSE image of the same specimen. It can be noticed that the 3nm layer is always visible and that the 3 kV SE image, in spite of the poorer resolution, shows the same contrast of the BSE image. In the SE mode, an increase of the accelerating voltage produces a contrast inversion. On the contrary, when observed with BSE, the layers of GaAs are always brighter than the AlAs ones , independently of the beam energy.


Insects ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 734
Author(s):  
Agnieszka Nowińska ◽  
Ping-ping Chen ◽  
Jolanta Brożek

The goal of this study was to analyze the types and distributional patterns of sensilla in Corixoidea, which is part of the approach to the phylogeny study of Nepomorpha, based on the morphological characters of sensilla. This paper presents the results of the study, with the use of a scanning electron microscope (SEM), on the antennae of species from the families Corixidae and Micronectidae. The antennal sensilla of eleven species from Corixidae and two species from Micronectidae were studied. Five main types of sensilla with several subtypes of sensilla trichodea were found and described. The study has shown that the family Corixidae has a strong uniformity when it comes to antennal sensilla (similar patterns of sensilla trichodea and basiconica), and a similarity to the types and distributions of sensilla in two species of the family Micronectidae. However, significant differences between the families were also discovered (differences in sensilla presence on the first and second antennomeres, lack of sensilla coeloconica on the third antennomere in Micronectidae), which leads to a supportive conclusion of the systematic position of Micronectidae as a family.


2014 ◽  
Vol 32 (2) ◽  
pp. 275-278
Author(s):  
Joanna Z. Kadłubowska ◽  
Ewa Kalinowska-Kucharska

Several year long investigations of the developmental cycle of <i>Microsphaera palczewskii</i> occurring on the leaves of <i>Caragana arborescens</i> in Central Poland are reported. The material was studied with light and scanning electron microscopes. The scanning microscopy micrographs of the clistothecia and appendages presented in this report are the first micrographs of this species.


2018 ◽  
Vol 69 (1) ◽  
pp. 24-31
Author(s):  
Khaled S. Hatamleh ◽  
Qais A. Khasawneh ◽  
Adnan Al-Ghasem ◽  
Mohammad A. Jaradat ◽  
Laith Sawaqed ◽  
...  

Abstract Scanning Electron Microscopes are extensively used for accurate micro/nano images exploring. Several strategies have been proposed to fine tune those microscopes in the past few years. This work presents a new fine tuning strategy of a scanning electron microscope sample table using four bar piezoelectric actuated mechanisms. The introduced paper presents an algorithm to find all possible inverse kinematics solutions of the proposed mechanism. In addition, another algorithm is presented to search for the optimal inverse kinematic solution. Both algorithms are used simultaneously by means of a simulation study to fine tune a scanning electron microscope sample table through a pre-specified circular or linear path of motion. Results of the study shows that, proposed algorithms were able to minimize the power required to drive the piezoelectric actuated mechanism by a ratio of 97.5% for all simulated paths of motion when compared to general non-optimized solution.


Sign in / Sign up

Export Citation Format

Share Document