scholarly journals EURAC SDI: A Near Real Time and Offline Automatic Metadata Generation Processing Chain

Author(s):  
2020 ◽  
Vol 12 (4) ◽  
pp. 674 ◽  
Author(s):  
Luca Pulvirenti ◽  
Giuseppe Squicciarino ◽  
Elisabetta Fiori ◽  
Paolo Fiorucci ◽  
Luca Ferraris ◽  
...  

A fully automated processing chain for near real-time mapping of burned forest areas using Sentinel-2 multispectral data is presented. The acronym AUTOBAM (AUTOmatic Burned Areas Mapper) is used to denote it. AUTOBAM is conceived to work daily at a national scale for the Italian territory to support the Italian Civil Protection Department in the management of one of the major natural hazards, which affects the territory. The processing chain includes a Sentinel-2 data procurement component, an image processing algorithm, and the delivery of the map to the end-user. The data procurement component searches every day for the most updated products into different archives. The image processing part represents the core of AUTOBAM and implements an algorithm for burned forest areas mapping that uses, as fundamental parameters, the relativized form of the delta normalized burn ratio and the normalized difference vegetation index. The minimum mapping unit is 1 ha. The algorithm implemented in the image processing block is validated off-line using maps of burned areas produced by the Copernicus Emergency Management Service. The results of the validation shows an overall accuracy (considering the classes of burned and unburned areas) larger than 95% and a kappa coefficient larger than 80%. For what concerns the class of burned areas, the commission error is around 1%−3%, except for one case where it reaches 25%, while the omission error ranges between 6% and 25%.


Author(s):  
P. J. Baeck ◽  
N. Lewyckyj ◽  
B. Beusen ◽  
W. Horsten ◽  
K. Pauly

<p><strong>Abstract.</strong> Detection of humans, e.g. for search and rescue operations has been enabled by the availability of compact, easy to use cameras and drones. On the other hand, aerial photogrammetry techniques for inspection applications allow for precise geographic localization and the generation of an overview orthomosaic and 3D terrain model. The proposed solution is based on nadir drone imagery and combines both deep learning and photogrammetric algorithms to detect people and position them with geographical coordinates on an overview orthomosaic and 3D terrain map. The drone image processing chain is fully automated and near real-time and therefore allows search and rescue teams to operate more efficiently in difficult to reach areas.</p>


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5675
Author(s):  
Christin Bald ◽  
Gerhard Schmidt

The knowledge of the exact position and orientation of a sensor with respect to a source (distribution) is essential for the correct solution of inverse problems. Especially when measuring with magnetic field sensors, the positions and orientations of the sensors are not always fixed during measurements. In this study, we present a processing chain for the localization of magnetic field sensors in real time. This includes preprocessing steps, such as equalizing and matched filtering, an iterative localization approach, and postprocessing steps for smoothing the localization outcomes over time. We show the efficiency of this localization pipeline using an exchange bias magnetoelectric sensor. For the proof of principle, the potential of the proposed algorithm performing the localization in the two-dimensional space is investigated. Nevertheless, the algorithm can be easily extended to the three-dimensional space. Using the proposed pipeline, we achieve average localization errors between 1.12 cm and 6.90 cm in a localization area of size 50cm×50cm.


2020 ◽  
Author(s):  
Christian Chwala ◽  
Gerhard Smiatek ◽  
Maximilian Graf ◽  
Julius Polz ◽  
Tanja Winterrath ◽  
...  

&lt;p&gt;Many cell phone base stations are connected by a network of commercial microwave links (CMLs). At the typically used frequencies between 15 GHz and 40 GHz, precipitation along the path of a CML leads to significant attenuation of the signal. The path-averaged rain rate along a CML can therefore be derived from measurements of the attenuation.&lt;/p&gt;&lt;p&gt;In cooperation with Ericsson, we record attenuation data of 4000 CMLs across Germany with our own open source data acquisition software. The data is acquired every minute and is available to us in real time. The dataset is continuously growing and now spans more than two and a half years.&amp;#160;&lt;/p&gt;&lt;p&gt;Here we present and discuss results from our current processing chain for hourly country-wide CML-derived rainfall fields. We show the effect of improved rain event detection in the raw attenuation time series and the necessity to correct for wet antenna attenuation (Graf et al., 2019). Validation is done via the gauge-adjusted radar product RADOLAN-RW of the German meteorological service. For summer months the pearson correlation between CML and radar data reaches up to 0.85, but is substantially worse during the winter months. The presented processing chain is fast enough to be applied in real-time, which will be illustrated in a live-demo. Furthermore, since Germany has both, a large network of CMLs and a modern weather radar network, we also work on the combination of these data sources. We will present first results of an approach where CMLs are used as an additional source for weather radar rain rate adjustment similarly to the existing gauge-adjustment done in RADOLAN.&lt;/p&gt;&lt;p&gt;Graf, M., Chwala, C., Polz, J., and Kunstmann, H.: Rainfall estimation from a German-wide commercial microwave link network: Optimized processing and validation for one year of data, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-423, 2019&lt;/p&gt;


2019 ◽  
Vol 11 (20) ◽  
pp. 2437 ◽  
Author(s):  
Zheng Wang ◽  
Zhenhong Li ◽  
Yanxiong Liu ◽  
Junhuan Peng ◽  
Sichun Long ◽  
...  

Due to the high temporal resolution (e.g., 10 s) required, and large data volumes (e.g., 360 images per hour) that result, there remain significant issues in processing continuous ground-based synthetic aperture radar (GBSAR) data. This includes the delay in creating displacement maps, the cost of computational memory, and the loss of temporal evolution in the simultaneous processing of all data together. In this paper, a new processing chain for real-time GBSAR (RT-GBSAR) is proposed on the basis of the interferometric SAR small baseline subset concept, whereby GBSAR images are processed unit by unit. The outstanding issues have been resolved by the proposed RT-GBSAR chain with three notable features: (i) low requirement of computational memory; (ii) insights into the temporal evolution of surface movements through temporarily-coherent pixels; and (iii) real-time capability of processing a theoretically infinite number of images. The feasibility of the proposed RT-GBSAR chain is demonstrated through its application to both a fast-changing sand dune and a coastal cliff with submillimeter precision.


1979 ◽  
Vol 44 ◽  
pp. 41-47
Author(s):  
Donald A. Landman

This paper describes some recent results of our quiescent prominence spectrometry program at the Mees Solar Observatory on Haleakala. The observations were made with the 25 cm coronagraph/coudé spectrograph system using a silicon vidicon detector. This detector consists of 500 contiguous channels covering approximately 6 or 80 Å, depending on the grating used. The instrument is interfaced to the Observatory’s PDP 11/45 computer system, and has the important advantages of wide spectral response, linearity and signal-averaging with real-time display. Its principal drawback is the relatively small target size. For the present work, the aperture was about 3″ × 5″. Absolute intensity calibrations were made by measuring quiet regions near sun center.


Author(s):  
Alan S. Rudolph ◽  
Ronald R. Price

We have employed cryoelectron microscopy to visualize events that occur during the freeze-drying of artificial membranes by employing real time video capture techniques. Artificial membranes or liposomes which are spherical structures within internal aqueous space are stabilized by water which provides the driving force for spontaneous self-assembly of these structures. Previous assays of damage to these structures which are induced by freeze drying reveal that the two principal deleterious events that occur are 1) fusion of liposomes and 2) leakage of contents trapped within the liposome [1]. In the past the only way to access these events was to examine the liposomes following the dehydration event. This technique allows the event to be monitored in real time as the liposomes destabilize and as water is sublimed at cryo temperatures in the vacuum of the microscope. The method by which liposomes are compromised by freeze-drying are largely unknown. This technique has shown that cryo-protectants such as glycerol and carbohydrates are able to maintain liposomal structure throughout the drying process.


Author(s):  
R.P. Goehner ◽  
W.T. Hatfield ◽  
Prakash Rao

Computer programs are now available in various laboratories for the indexing and simulation of transmission electron diffraction patterns. Although these programs address themselves to the solution of various aspects of the indexing and simulation process, the ultimate goal is to perform real time diffraction pattern analysis directly off of the imaging screen of the transmission electron microscope. The program to be described in this paper represents one step prior to real time analysis. It involves the combination of two programs, described in an earlier paper(l), into a single program for use on an interactive basis with a minicomputer. In our case, the minicomputer is an INTERDATA 70 equipped with a Tektronix 4010-1 graphical display terminal and hard copy unit.A simplified flow diagram of the combined program, written in Fortran IV, is shown in Figure 1. It consists of two programs INDEX and TEDP which index and simulate electron diffraction patterns respectively. The user has the option of choosing either the indexing or simulating aspects of the combined program.


Author(s):  
R. Rajesh ◽  
R. Droopad ◽  
C. H. Kuo ◽  
R. W. Carpenter ◽  
G. N. Maracas

Knowledge of material pseudodielectric functions at MBE growth temperatures is essential for achieving in-situ, real time growth control. This allows us to accurately monitor and control thicknesses of the layers during growth. Undesired effusion cell temperature fluctuations during growth can thus be compensated for in real-time by spectroscopic ellipsometry. The accuracy in determining pseudodielectric functions is increased if one does not require applying a structure model to correct for the presence of an unknown surface layer such as a native oxide. Performing these measurements in an MBE reactor on as-grown material gives us this advantage. Thus, a simple three phase model (vacuum/thin film/substrate) can be used to obtain thin film data without uncertainties arising from a surface oxide layer of unknown composition and temperature dependence.In this study, we obtain the pseudodielectric functions of MBE-grown AlAs from growth temperature (650°C) to room temperature (30°C). The profile of the wavelength-dependent function from the ellipsometry data indicated a rough surface after growth of 0.5 μm of AlAs at a substrate temperature of 600°C, which is typical for MBE-growth of GaAs.


Author(s):  
K. Harada ◽  
T. Matsuda ◽  
J.E. Bonevich ◽  
M. Igarashi ◽  
S. Kondo ◽  
...  

Previous observations of magnetic flux-lines (vortex lattices) in superconductors, such as the field distribution of a flux-line, and flux-line dynamics activated by heat and current, have employed the high spatial resolution and magnetic sensitivity of electron holography. And recently, the 2-D static distribution of vortices was also observed by this technique. However, real-time observations of the vortex lattice, in spite of scientific and technological interest, have not been possible due to experimental difficulties. Here, we report the real-time observation of vortex lattices in a thin superconductor, by means of Lorentz microscopy using a 300 kV field emission electron microscope. This technique allows us to observe the dynamic motion of individual vortices and record the events on a VTR system.The experimental arrangement is shown in Fig. 1. A Nb thin film for transmission observation was prepared by chemical etching. The grain size of the film was increased by annealing, and single crystals were observed with a thickness of 50∼90 nm.


Sign in / Sign up

Export Citation Format

Share Document