EOS Modeling and Reservoir Simulation Study of Bakken Gas Injection Improved Oil Recovery in the Elm Coulee Field, Montana

Author(s):  
Wanli Pu ◽  
Todd Hoffman
2005 ◽  
Vol 8 (06) ◽  
pp. 528-533 ◽  
Author(s):  
Shanqiang Luo ◽  
Maria A. Barrufet

Summary Water is usually considered insoluble in the oil phase; however, at the temperatures typically encountered in the steam-injection process, water may have higher than 40 mol% solubility in the oil phase. On a mass basis, experimental results from the literature indicate water solubility as high as33%. We developed a practical and robust algorithm for a water/oil/gas three-phase flash calculation. The algorithm is based on the well-developed vapor/liquid two-phase flash-calculation algorithm and avoids trivial or false solutions commonly found in multiphase flash calculations. We also developed a fully compositional thermal reservoir simulator, considering water/oil mutual solubility, to study the effect of water-in-oil solubility on oil recovery in the steam-injection process. A simulation study shows that when water is soluble in the oil phase, it may increase oil recovery appreciably. We also found that the oil fluids should be characterized with at least three components for accurate compositional thermal reservoir-simulation study. Introduction Steam injection is used widely as an improved-oil-recovery method for the production of heavy oil and many light-oil resources. Conventional reservoir simulation of the steam-injection process simplifies the computations by ignoring water solubility in the oil phase. However, as temperature increases, water solubility in the oil phase increases significantly. Griswold and Kasch studied water/oil mutual solubilities at elevated temperatures. Their data show that for a 54.3°API naphtha, the solubility of water in oil is 16.18 mol% at431.6°F; for a 42°API kerosene, the solubility of water in oil is 34.97 mol% at507.2°F; and for a 29.3°API lube oil, the solubility of water in oil is 43.44mol% at 537.8°F. Nelson also showed that water solubility in oil is as high as42 mol% at 540°F. Heidman et al. showed that the solubility of water in liquidC8 is 38.7 mol% at 500°F. Glandt and Chapman obtained up to 33.3 wt% of water dissolved in crude-oil mixtures and analyzed its effect on oil viscosity. This high solubility will dramatically change the viscosity, density, and thermal expansion of the hydrocarbon phase and, consequently, affect the production performance. Therefore, a rigorous and efficient multiphase flash algorithm is needed to evaluate the phase equilibrium of water/hydrocarbon systems. Also, fully compositional thermal reservoir simulations, which consider water-in-oil solubility, are necessary to evaluate the extent to which the water-in-oil solubility affects oil recovery in the steam-injection process.


2015 ◽  
Vol 133 ◽  
pp. 838-850 ◽  
Author(s):  
Yang Zhang ◽  
Yuting Wang ◽  
Fangfang Xue ◽  
Yanqing Wang ◽  
Bo Ren ◽  
...  

2007 ◽  
Vol 10 (05) ◽  
pp. 482-488 ◽  
Author(s):  
Kristian Jessen ◽  
Erling Halfdan Stenby

Summary Accurate performance prediction of miscible enhanced-oil-recovery (EOR) projects or CO2 sequestration in depleted oil and gas reservoirs relies in part on the ability of an equation-of-state (EOS) model to adequately represent the properties of a wide range of mixtures of the resident fluid and the injected fluid(s). The mixtures that form when gas displaces oil in a porous medium will, in many cases, differ significantly from compositions created in swelling tests and other standard pressure/volume/temperature (PVT) experiments. Multicontact experiments (e.g., slimtube displacements) are often used to condition an EOS model before application in performance evaluation of miscible displacements. However, no clear understanding exists of the impact on the resultant accuracy of the selected characterization procedure when the fluid description is subsequently included in reservoir simulation. In this paper, we present a detailed analysis of the quality of two different characterization procedures over a broad range of reservoir fluids (13 samples) for which experimental swelling-test and slimtube-displacement data are available. We explore the impact of including swelling-test and slimtube experiments in the data reduction and demonstrate that for some gas/oil systems, swelling tests do not contribute to a more accurate prediction of multicontact miscibility. Finally, we report on the impact that use of EOS models based on different characterization procedures can have on recovery predictions from dynamic 1D displacement calculations. Introduction During the past few decades, a significant effort has been invested in the studies and development of improved-oil-recovery processes. From a technical point of view, gas injection can be a very efficient method for improving the oil production, particularly in the case when miscibility develops during the displacement process. The lowest pressure at which a gas should be injected into the reservoir to obtain the multicontact miscible displacement—the minimum miscibility pressure (MMP)—has consequently attained a very important status in EOR studies. Various methods for measuring and calculating the MMP have been proposed in the literature. Many of these are based on simplifications such as the ternary representation of the compositional space. This method fails to honor the existence of a combined mechanism controlling the development of miscibility in real reservoir fluids. Zick (1986) and Stalkup (1987) described the existence of the condensing/vaporizing mechanism. They showed that the development of miscibility (MMP) in multicomponent gas-displacement processes could, independent of the mechanism controlling the development of miscibility, be predicted accurately by 1D compositional simulations. A semianalytical method for predicting the MMP was later presented by Wang and Orr (1997), who played an important role in the development and application of the analytical theory of gas-injection processes. Jessen et al. (1998) subsequently developed an efficient algorithm for performing these calculations, reducing the MMP calculation time to a few seconds even for fluid descriptions of 10 components or more. Later, Jessen et al. (2001) used this approach to generate approximate solutions to the dispersion-free, 1D-displacement problem for multicomponent gas-injection processes. Analytical and numerical methods for predicting the performance of a gas-injection process depend on an EOS to predict the phase behavior of the mixtures that form in the course of a displacement process. The role of the phase behavior in relation to numerical diffusion in compositional reservoir simulation has been pointed out previously by Stalkup (1990) and by Stalkup et al. (1990). Recently, Jessen et al. (2004) proposed a method to quantify the interplay of the phase behavior and numerical diffusion in a finite-difference simulation of a gas-injection process. By analyzing the phase behavior of the injection-gas/reservoir-fluid system, a measure of the impact, referred to as the dispersive distance, can be calculated. The dispersive distance is useful when designing and interpreting large-scale compositional reservoir simulations.


2012 ◽  
Author(s):  
Mehdi Shabani Afrapoli ◽  
Christian M. Crescente ◽  
Shidong Li ◽  
Samaneh Alipour ◽  
Ole Torsater

Author(s):  
Moyosore, Olanipekun ◽  
Akpabio, Julius U. ◽  
Isehunwa, Sunday O.

Fluid-flood and other improved oil recovery techniques are becoming prominent in global petroleum production because a large proportion of production is from mature oil fields. Although water flooding and gas injection are well established techniques in the industry, several of the screening criteria in literature are discipline which could sometimes be subjective. This work used experimental design techniques to develop proxy models for predicting oil recovery under water-flood and gas-flood conditions. The objective of the study is to develop a quantitative screening method that would allow for candidates to be evaluated and ranked for water flood or gas injection. The model was applied to some field cases and compared with published models and the well-known Welge Analysis method. The coefficient constants for the oil formation volume factor for water flooding and gas injection was 0.0139 and 0.0434 respectively. Similarly, the coefficient constants for water injection and gas injection for the generated proxy model was -2.34* 10-8 and -6.1 *10-5 respectively. The results show that the proxy models developed are quite robust and can be used for first pass screening of water and gas flood candidates. 


2021 ◽  
Author(s):  
Luky Hendraningrat ◽  
Saeed Majidaie ◽  
Nor Idah Ketchut ◽  
Fraser Skoreyko ◽  
Seyed Mousa MousaviMirkalaei

Abstract The potential of nanoparticles, which are classified as advanced fluid material, have been unlocked for improved oil recovery in recent years such as nanoparticles-assisted waterflood process. However, there is no existing commercial reservoir simulation software that could properly model phase behaviour and transport phenomena of nanoparticles. This paper focuses on the development of a novel robust advanced simulation algorithms for nanoparticles that incorporate all the main mechanisms that have been observed for interpreting and predicting performance. The general algorithms were developed by incorporating important physico-chemical interactions that exist across nanoparticles along with the porous media and fluid: phase behaviour and flow characteristic of nanoparticles that includes aggregation, splitting and solid phase deposition. A new reaction stoichiometry was introduced to capture the aggregation process. The new algorithm was also incorporated to describe disproportionate permeability alteration and adsorption of nanoparticles, aqueous phase viscosities effect, interfacial tension reduction, and rock wettability alteration. Then, the model was tested and duly validated using several previously published experimental datasets that involved various types of nanoparticles, different chemical additives, hardness of water, wide range of water salinity and rock permeability and oil viscosity from ambient to reservoir temperature. A novel advanced simulation tool has successfully been developed to model advanced fluid material, particularly nanoparticles for improved/enhanced oil recovery. The main scripting of physics and mechanisms of nanoparticle injection are accomplished in the model and have acceptable match with various type of nanoparticles, concentration, initial wettability, solvent, stabilizer, water hardness and temperature. Reasonable matching for all experimental published data were achieved for pressure and production data. Critical parameters have been observed and should be considered as important input for laboratory experimental design. Sensitivity studies have been conducted on critical parameters and reported in the paper as the most sensitive for obtaining the matches of both pressure and production data. Observed matching parameters could be used as benchmarks for training and data validation. Prior to using in a 3D field-scale prediction in Malaysian oilfields, upscaling workflows must be established with critical parameters. For instance, some reaction rates at field-scale can be assumed to be instantaneous since the time scale for field-scale models is much larger than these reaction rates in the laboratory.


Sign in / Sign up

Export Citation Format

Share Document