scholarly journals SOIL RESPIRATION IN STANDS OF DIFFERENT TREE SPECIES

Author(s):  
Jurgita SASNAUSKIENĖ ◽  
Nomeda SABIENĖ ◽  
Vitas MAROZAS ◽  
Laima ČESONIENĖ ◽  
Kristina LINGYTĖ

Forest ecosystems of different tree species participate actively in climatic and biotic processes, such as photosynthesis, plant and soil respiration, therefore knowledge of soil respiration, especially of CO2 emissions to the atmosphere is of great importance. The aim of the study was to determine soil respiration rate of stands of deciduous (Betula pubescens Ehrh., Quercus robur L.) and coniferous (Larix eurolepis Henry, Thuja occidentalis L.) tree species as well as impact of abiotic (soil temperature, humidity, electrical conductivity, pH) and biotic (abundance of undergrowth, shrub, herbs) factors. Measurements of CO2 emissions, temperature, moisture and electrical conductivity were performed in-situ in the stands of different tree species with portable ADC BioScientific LCpro+ system and digital electrochemical device “Wet” (Delta-T). Soil samples were collected for the physicochemical analysis simultaneously. Chemical analysis of soil samples was done at the lab of the Environmental Research of the Aleksandras Stulginskis University by standard methods. Soil respiration was highest in the stand of Thuja occidentalis and lowest in the stand of Betula pubescens. Soil respiration intensity of the tree stands increased as follow: Thuja˂ Quercus˂ Larix˂ Betula. In the coniferous tree stands, the soil respiration was lower on average 27% comparing to deciduous tree stands. Soil respiration rate increased with increase of herbaceous vegetation cover and temperature. Soil respiration rate was mostly influenced by abundance of herbaceous vegetation (r = 0.91) of all biotic factors investigated, while soil temperature (r = 0.75) of abiotic factors. 60 years old stands of different tree species formed specific conditions what influenced different soil respiration rates.

2018 ◽  
Vol 40 (2) ◽  
pp. 153 ◽  
Author(s):  
Xuexia Wang ◽  
Yali Chen ◽  
Yulong Yan ◽  
Zhiqiang Wan ◽  
Ran Chao ◽  
...  

The response of soil respiration to simulated climatic warming and increased precipitation was evaluated on the arid–semi-arid Stipa steppe of Inner Mongolia. Soil respiration rate had a single peak during the growing season, reaching a maximum in July under all treatments. Soil temperature, soil moisture and their interaction influenced the soil respiration rate. Relative to the control, warming alone reduced the soil respiration rate by 15.6 ± 7.0%, whereas increased precipitation alone increased the soil respiration rate by 52.6 ± 42.1%. The combination of warming and increased precipitation increased the soil respiration rate by 22.4 ± 11.2%. When temperature was increased, soil respiration rate was more sensitive to soil moisture than to soil temperature, although the reverse applied when precipitation was increased. Under the experimental precipitation (20% above natural rainfall) applied in the experiment, soil moisture was the primary factor limiting soil respiration, but soil temperature may become limiting under higher soil moisture levels.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1052
Author(s):  
Xiaokun Tian ◽  
Xiaogai Ge ◽  
Benzhi Zhou ◽  
Maihe Li

Understanding the effects of soil stoichiometry and nutrient resorption on soil CO2 emissions is critical for predicting forest ecosystem nutritional demands and limitations tooptimal forest growth. In this study, we examined the effects of above- and belowground stoichiometry on soil CO2 emissions and their mediating effect on soil respiration in subtropical moso bamboo (Phyllostachys edulis) plantations. Our results showed that the soil respiration rate did not differ significantly among four bamboo stands. Nitrogen (N) and phosphorous (P) concentrations were higher in bamboo leaves than litter, whereas the C:N and C:P ratios showed the opposite trend. Significant positive correlations of soil cumulative CO2 emission with litter C:P (p = 0.012) and N:P (p = 0.041) ratios indicated that litter stoichiometry was a better predictor of soil respiration than aboveground stoichiometry. Cumulative soil CO2 emissions were significantly negatively correlated with soil microbe C:N (p = 0.021) and C:N (p = 0.036) ratios, and with soil respiratory quotients (p < 0.001). These results suggest that litter and soil stoichiometry are reliable indicators of the soil respiration rate. This study provides important information about the effects of ecosystem stoichiometry and soil microbial biomass on soil CO2 emissions and highlights them editing role of soil nutritional demands and limitations in the association between soil respiration rates and aboveground plant tissues.


Author(s):  
Monika Rawat

Soil respiration is defined as the production of carbon dioxide when soil organisms are active. It is an important process in the ecosystem and has direct influence on climate change. Therefore understanding it under different vegetation types is an essential goal in soil science. The major sources which effect the soil respiration rate are plant roots, the rhizosphere, microbes and soil fauna and these sources are control by various factors like temperature, moisture, nutreint content and oxygen in the soil. Soil respiration rate is important for understanding soil biological activity, nutrient cycling, soil microbial biomass, soil organic matter and its decomposition.Therefore soil respiration was studied under the canopy of ten dominant tree species of temperate forest. Our study determined that highest soil respiration was under the canopy of Eunonymous pendulus (EP) i.e. 20.01 μmolm−2 s−1 and across season it was high during the rains.


2014 ◽  
Vol 618 ◽  
pp. 380-387
Author(s):  
Jiang Ming Ma ◽  
Meng Wu ◽  
Ting Ting Zhan ◽  
Feng Tian ◽  
Shi Chu Liang

This experiment was conducted on the 4 years old Eucalyptus plantation in Beihai of Guangxi, southern China. From January to December 2013, in the spring, summer, autumn and winter, seasonal variation and diurnal variation of the soil respiration and its environmental factors had been observed, respectively. The results showed that: (1) Soil respirations has obvious seasonal characteristics, the soil respiration rate in each seasons showed that: summer> spring > autumn > winter. The heterotrophic respiration rate was higher than the autotrophic respiration rate. The contribution of autotrophic respiration rate in winter was higher than that in other three seasons. (2) Soil respiration has obvious diurnal characteristic, it could be expressed as a single-peak curve. But the maximum value of soil respiration appeared in different times in different seasons. (3) There existed positive correlation index exponential relationships between the soil temperature and the soil respiration rate and its components. Soil temperature changes could explain soil respiration, autotrophic respiration and heterotrophic respiration by 90.2%, 27.5% and 92.8%. Temperature sensitivity showed following order: the heterotrophic respiration rate> the soil respiration rate> the autotrophic respiration rate, in terms of affected by temperature, the heterotrophic respiration was higher than the autotrophic respiration. (4) There were notable positive correlations between soil moisture content and soil respiration rate. Obviously, soil moisture content could promote soil respiration in a certain range.


2009 ◽  
Vol 25 (5) ◽  
pp. 531-539 ◽  
Author(s):  
Minaco Adachi ◽  
Atsushi Ishida ◽  
Sarayudh Bunyavejchewin ◽  
Toshinori Okuda ◽  
Hiroshi Koizumi

Abstract:Spatial and seasonal variation in soil respiration rates were investigated in a tropical dry forest in Thailand. The spatial variation was examined at 50 points within a 2-ha plot in the forest floor during the dry and wet seasons. The seasonal and diurnal variations in soil respiration were measured at 16 and 5 points, respectively. The mean soil respiration rate during the wet season was 1041 ± 542 mg CO2 m−2 h−1 (mean ± SD), which is about twice that during the dry season. Soil respiration rate was negatively correlated with soil water content during the wet season. A polynomial equation using seasonal data describes soil respiration and water content: soil respiration rate increased with soil water content, but started to drop when soil water content exceeded 21%. The diurnal variation in soil respiration rate during the wet season was positively correlated with soil temperature, whereas during the wet season it was not correlated with soil temperature. The diurnal variation in soil respiration rate during the dry season showed a midday depression. The estimation of soil carbon flux with polynomial equations should incorporate different functions for the wet and dry seasons in tropical dry forests.


2016 ◽  
Vol 12 (4) ◽  
pp. 192-200
Author(s):  
Juan Wang ◽  
Jianlin Wang ◽  
Jiabin Liu ◽  
Yongchao Jiang ◽  
Jindong Xu ◽  
...  

2012 ◽  
Vol 36 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Adolfo Valente Marcelo ◽  
José Eduardo Corá ◽  
Newton La Scala Junior

Because of the climate changes occurring across the planet, especially global warming, the different forms of agricultural soil use have attracted researchers´ attention. Changes in soil management may influence soil respiration and, consequently, C sequestration. The objectives of this study were to evaluate the long-term influence of liming on soil respiration and correlate it with soil chemical properties after two years of liming in a no-tillage system. A randomized complete block design was used with six replications. The experimental treatments consisted of four lime rates and a control treatment without lime. Two years after liming, soil CO2 emission was measured and the soil sampled (layers 0-5, 5-10, 10-20, and 20-30 cm). The P, Ca2+ e Mg2+ soil contents and pH and base saturation were determined. CO2 emission from soil limed at the recommended rate was 24.1 % higher, and at twice the recommended rate, 47.4 % higher than from unlimed soil. Liming improved the chemical properties, and the linear increase in soil respiration rate correlated positively with the P, Ca2+ and Mg2+ soil contents, pH and base saturation, and negatively with H + Al and Al3+ contents. The correlation coefficient between soil respiration rate and chemical properties was highest in the 10-20 cm layer.


Sign in / Sign up

Export Citation Format

Share Document