scholarly journals Correlations between grain yield and related traits in winter wheat under multi-environmental traits

2020 ◽  
Vol 12 (4) ◽  
pp. 295-300
Author(s):  
N. Tsenov ◽  
T. Gubatov ◽  
I. Yanchev

Abstract. In a series of field trials, a database of quantitative traits associated with winter wheat grain yield has been collected. The aim of the present study is to determine the relationships between the winter wheat (Triticum aestivum L.) traits of productivity in environments causing the maximum possible variation of each of the traits. In order to determine the correlations between the quantitative characters studied, all possible statistical methods have been applied (regression analysis, PCA, Multiple Correspondence analysis), which complement each other. It was found that the nature of the correlations between traits depends to a large extent on the methods for their evaluation. There are high and significant correlations between grain yields and the grain number per spike (weight of grain per spike and number of grains per m2) even under strong genotype by environment interaction of all the traits in trails. The established results are related to possible options for increasing winter wheat grain yield by breeding.

1993 ◽  
Vol 73 (2) ◽  
pp. 417-427 ◽  
Author(s):  
J. B. Thomas ◽  
G. B. Schaalje ◽  
M. N. Grant

This study examines the relationship between plant height, winterhardiness and genotype-by-environment interaction in the grain yield of winter wheat in western Canada. Positive correlations between plant height and winter survival ability (WSA) and between plant height and lodging score have persisted among entries in Western Hard Red Winter Wheat Cooperative Trials (WWC) for 33 yr. Progress has been made in developing winterhardy semidwarfs; however, no short cultivars have yet been isolated in the most hardy group. For Saskatchewan and Manitoba trials, correlations between WSA and yield (WSA:Y) were mostly positive, indicating widespread and intense cold stress. In southwest Alberta trials, WSA:Y ranged from significantly positive to significantly negative, indicating the wide range and unpredictability of cold stress in this area; in North and Central Alberta the distribution of WSA: Y was intermediate between southwest Alberta and Manitoba and Saskatchewan. In high stress trials (WSA:Y > 0.4), cultivar grain yield increased with increased cultivar height (on average, +0.024 tonnes ha−1 for each centimetre increase in height) but as stress levels declined, this relationship was reversed. In trials with WSA: Y < −0.4, cultivar yield was negatively related to cultivar height (average slope of −0.026 tonnes ha−1 per centimetre increase in height). Similar results were found in a trial of six winter wheat cultivars over three sites and 6 years within southern Alberta. In high stress trials, tall and hardy cultivars stabilized grain yield through high rates of survival while non-hardy cultivars performed poorly. Without damaging cold stress, short and non-hardy cultivars showed the highest yields and the greatest response to environmental productivity. Key words: Yield, winterhardiness, coldstress


Author(s):  
Om Prakash Yadav ◽  
A. K. Razdan ◽  
Bupesh Kumar ◽  
Praveen Singh ◽  
Anjani K. Singh

Genotype by environment interaction (GEI) of 18 barley varieties was assessed during two successive rabi crop seasons so as to identify high yielding and stable barley varieties. AMMI analysis showed that genotypes (G), environment (E) and GEI accounted for 1672.35, 78.25 and 20.51 of total variance, respectively. Partitioning of sum of squares due to GEI revealed significance of interaction principal component axis IPCA1 only On the basis of AMMI biplot analysis DWRB 137 (41.03qha–1), RD 2715 (32.54qha–1), BH 902 (37.53qha–1) and RD 2907 (33.29qha–1) exhibited grain yield superiority of 64.45, 30.42, 50.42 and 33.42 per cent, respectively over farmers’ recycled variety (24.43qha–1).


2021 ◽  
Vol 50 (2) ◽  
pp. 343-350
Author(s):  
Meijin Ye ◽  
Zhaoyang Chen ◽  
Bingbing Liu ◽  
Haiwang Yue

Stability and adaptability of promising maize hybrids in terms of three agronomic traits (grain yield, ear weight and 100-kernel weight) in multi-environments trials were evaluated. The analysis of AMMI model indicated that the all three agronomic traits showed highly significant differences (p < 0.01) on genotype, environment and genotype by environment interaction. Results showed that genotypes Hengyu321 (G9), Yufeng303 (G10) and Huanong138 (G3) were of higher stability on grain yield, ear weight and 100-kernel weight, respectively. Genotypes Hengyu1587 (G8) and Hengyu321 (G9) showed good performance in terms of grain yield, whereas Longping208 (G2) and Weike966 (G12) showed broad adaptability for ear weight. It was also found that the genotypes with better adaptability in terms of 100-kernel weight were Zhengdan958 (G5) and Weike966 (G12). The genotype and environment interaction model based on AMMI analysis indicated that Hengyu1587 and Hengyu321 were the ideal genotypes, due to extensive adaptability and high grain yield under both testing sites. Bangladesh J. Bot. 50(2): 343-350, 2021 (June)


2020 ◽  
Vol 1 (1) ◽  
pp. 45-49
Author(s):  
Tsotne Samadashvili ◽  
Gulnari Chkhutiashvili ◽  
Mirian Chokheli ◽  
Zoia Sikharulidze ◽  
Qetevan Nacarishvili

Wheat is a vital crop in Georgia and in the world. Because of the increase in the rate of population growth, improving the grain yield is the way to meet food demand. Proper crop nutrition plays a vital role in maintaining the world’s food supply. Fertilizer is essential for accomplishing this.One of the most important means for increasing the wheat yield is fertilizer, especially, organic fertilizer. The present research was carried out to study the effects of different doses (150ml, 200ml and 300 ml on ha) of humic organic fertilizer “Ecorost” on yield of winter wheat cultivar “Tbilisuri 15”. The humic liquid fertilizer "Ecorost" is a peat-based organic-mineral fertilizer. The product is active and saturated due to the use of the latest technology and living bacteria found in peat. The field trials were conducted in 2017-2019 at the Experimental Site of Scientific Research Center of Agriculture in Dedopliskharo- arid region (Eastern Georgia).Liquid fertilizer was applied two times: in tillering stage in early spring and two weeks after - in stem elongation stage. Results indicated that the highest wheat grain yield (4t/ha) was achieved when the plants were fertilized with 300 ml on 1 ha ofEcorost. Applications of liquid fertilizer “Ecorost” increased grain yield of winter wheat by 16.2% in comparison with standard nitrogen fertilization. Thus, liquid fertilizer “Ecorost” had a significant effect on wheat grain yield compared to control standard nitrogen fertilizer.


2020 ◽  
pp. 1433-1442
Author(s):  
Venâncio Salegua ◽  
Rob Melis ◽  
Deidré Fourie ◽  
Julia Sibiya ◽  
Cousin Musvosvi

Dry bean (Phaseolus vulgaris L.) is grown under an extensive range of agro-climatic conditions and is an essential source of protein and income globally. This study aimed to evaluate yield performance, stability, and bacterial brown spot (BBS) disease resistance of fourteen dark red kidney genotypes across environments in South Africa namely Carolina, Clarens, Cedara, Middelburg, Potchefstroom, and Warden. Analysis of variance (ANOVA), additive main effects and multiplicative interaction (AMMI) and the genotype plus genotype by environment interaction (GGE-biplot) analysis were used to evaluate grain yield performance, stability, and BBS disease resistance. The AMMI ANOVA revealed that mean squares for grain yield and BBS severity for the environment, genotype, and genotype by environment interaction were highly significant (P<0.001). Four interaction principal components (IPCA1 - 4) for grain yield and IPCA1 for BBS severity were highly significant (P<0.001, P<0.01). Genotype G12 showed broad adaptation for both high grain yield and low BBS severity across the six environments, while genotypes G08, G06, G03, G02, G05, and G04 had specific adaption for high grain yield and low BBS severity. These genotypes recorded grain yield above the grand mean and the best check cultivar, both with 1.43 t ha-1 , and BBS severity below the grand mean (31.90%) and the best check (48.89%). The genotypes identified with either broad or specific adaptation can be released in the environments they are adapted to, or used as parents in breeding programmes aiming to improve grain yield and BBS disease resistance of dry bean for farmers in South Africa.


2019 ◽  
Vol 65 (2) ◽  
pp. 51-58
Author(s):  
Boryana Dyulgerova ◽  
Nikolay Dyulgerov

Abstract The aim of this study was to examine the genotype by environment interaction for grain yield and to identify high-yielding and stable mutant lines of 6-rowed winter barley under different growing seasons. The study was carried out during 7 growing seasons from 2010 – 2011 to 2016 – 2017 in the experimental field of the Institute of Agriculture – Karnobat, Southeastern Bulgaria. Fourteen advanced mutant lines and the check variety Vesletc were studied using a complete block design with 4 replications. The AMMI analysis of variance indicated that 20.54% of the variation for grain yield was explained by the effect of genotype and 37.34% and 42.12% were attributable to the environmental effects and genotype by environment interaction. The magnitude of the genotype by environment interaction was two times larger than that of genotypes, indicating that there was a substantial difference in genotype response across environments. The AMMI and GGE biplot analyses identified G9 as the highest yielding and stable genotype. This mutant line can be recommended for further evaluation for variety release. The mutant lines G6, G13 and G15 were suggested for inclusion in the breeding program of winter barley due to its high grain yield and intermediate stability.


Sign in / Sign up

Export Citation Format

Share Document