Contributions to Molecular Phylogeny of Lichen-Forming Fungi, 1. The Family Candelariaceae

2020 ◽  
Vol 62 (3-4) ◽  
pp. 293-307
Author(s):  
S. Y. Kondratyuk ◽  
L. Lőkös ◽  
M.-H. Jeong ◽  
S.-O. Oh ◽  
A. S. Kondratiuk ◽  
...  

Three genera new for science, i.e. Candelinella S. Y. Kondr. for the Candelariella makarevichiae group, Opeltiella S. Y. Kondr. for the Candelaria fraudans group, as well as Protocandelariella Poelt, D. Liu, J.-S. Hur et S. Y. Kondr. for the Candelariella subdeflexa group are proposed for robust monophyletic branches of the Candelariaceae on the basis of three-gene phylo- geny (i.e. concatenated nrITS, 12S mtSSU and 28S nrLSU sequences). Eight new combinations, i.e. Candelinella makarevichiae (for Candelariella makarevichiae S. Y. Kondr., L. Lokos et J.-S. Hur), Candelinella deppeanae (for Candelariella deppeanae M. Westb.), Opeltiella fraudans (for Candelaria fraudans Poelt et Oberw.), Opeltiella fibrosoides (for Candelaria fibrosoides M. Westb. et Froden), Opeltiella rubrisoli (for Candelariella rubrisoli D. Liu et J.-S. Hur), Opeltiella canadensis (for Candelariella canadensis H. Magn.), Protocandelariella subdeflexa (for Lecanora subdeflexa Nyl.), Protocandelariella blastidiata (for Candelariella blastidiata L. Yakovchenko) are provided.Molecular data provided for Candelinella makarevichiae (including holotype and iso- type), as well as additional specimens of Candelaria asiatica from South Korea for the first time. The latter species (Candelaria asiatica) from China, as well as’Candelaria’ murrayi from Argentina, South America are recorded for the first time. Voucher of Candelariella vitellina from Antarctica is also identified based on molecular phylogeny. It is for the first time shown that ’Candelaria’murrayi is positioned in the outermost position to Candelaria s. str. branch of the phylogenetic tree of the Candelariaceae, and may belong to another genus. Status of the ’Candelariella’medians group, the’Candelariella’ placodizans group, as well as single species ’Candelariella’reflexa and’Candelaria’ pacifica, forming separate branches outside the Candelariella s. str. and Candelaria s. str. clades, will be clarified when additional molecular data will be accumulated. Candelariella subsquamulosa D. Liu et Hur, recently described from South Korea (Liu et al. 2019), proved to be a new synonym of Candelinella makarevichiae.

2021 ◽  
Vol 63 (3-4) ◽  
pp. 351-390
Author(s):  
S. Y. Kondratyuk ◽  
L. Lőkös ◽  
I. Kärnefelt ◽  
A. Thell ◽  
M.-H. Jeong ◽  
...  

Seven genera new to science, i.e.: Helmutiopsis, Huriopsis, Johnsheardia, Klauskalbia, Kudratovia, Kurokawia and Poeltonia of the Physciaceae are proposed for the ‘Rinodina’ atrocinerea, the ‘Rinodina’ xanthophaea, the ‘Rinodina’ cinnamomea, the ‘Heterodermia’ obscurata, the ‘Rinodina’ straussii, the ‘Anaptychia’ isidiata and the ‘Physconia’ grisea groups consequently that all form strongly supported monophyletic branches in a phylogeny analysis based on a combined matrix of nrITS and mtSSU sequences. Phylogenetic positions of species belonging to the genera Kashiwadia s. l., Leucodermia, Mischoblastia,Oxnerella, Phaeorrhiza s. l., Polyblastidium and Rinodinella s. l. are discussed. Oxnerella afghanica which for the first time recorded as parasitic lichen species from both epiphytic and saxicolous crustose lichens is designated as type species for the genus Oxnerella. Sequences of the recently described Physcia orientostellaris as well as Huriopsis xanthophaea and additional sequences of Kashiwadia aff. orientalis and Mischoblastia aff. oxydata are submitted to the GenBank. The positions of Polyblastidium casaterrinum from Costa Rica, ‘Rinodina’ efflorescens from Białowieża, Poland, and ‘Mischoblastia’ confragosula from Cambodia in the Physciaceae are confirmed in a phylogeny analysis based on the nrITS sequences. The presence of ‘extraneous mycobiont DNA’ in lichen associations is exemplified with earlier incorrect identifications of Heterodermia, Kashiwadia, Kurokawia,Oxnerella and Poeltonia specimens. Fifty-six new combinations are presented: Helmutiopsis alba (for Rinodina alba Metzler ex Arn.), Helmutiopsis aspersa (for Lecanora aspersa Borrer), Helmutiopsis atrocinerea (for Parmelia atrocinerea Fr.), Huriopsis chrysidiata (for Rinodina chrysidiata Sheard), Huriopsis chrysomelaena (for Rinodina chrysomelaena Tuck.), Huriopsis lepida (for Lecanora lepida Nyl.), Huriopsis luteonigra (for Rinodina luteonigra Zahlbr.), Huriopsis plana (for Rinodina plana H. Magn.), Huriopsis thiomela (for Lecanora thiomela Nyl.), Huriopsis xanthomelana (for Rinodina xanthomelana Müll. Arg.), Huriopsis xanthophaea (for Lecanora xanthophaea Nyl.), Johnsheardia cinnamomea (for Rinodina mniaroea var. cinnamomea Th. Fr.), Johnsheardia herteliana (for Rinodina herteliana Kaschik), Johnsheardia jamesii (for Rinodina jamesii H. Mayrhofer), Johnsheardia reagens (for Rinodina reagens Matzer et H. Mayrhofer), Johnsheardia zwackhiana (for Lecanora zwackhiana Kremp.), Kashiwadia austrostellaris (for Physcia austrostellaris Elix), Kashiwadia jackii (for Physcia jackii Moberg), Kashiwadia littoralis for Physcia littoralis Elix), Kashiwadia nubila (for Physcia nubila Moberg), and Kashiwadia tropica (for Physcia tropica Elix), Klauskalbia crocea (for Heterodermia crocea R. C. Harris), Klauskalbia flabellata (for Parmelia flabellata Fée), Klauskalbia obscurata (for Physcia speciosa (Wulfen) Nyl. *obscurata Nyl.), Klauskalbia paradoxa (for Heterodermia paradoxa Schumm et Schäfer-Verwimp), Kudratovia bohlinii (for Rinodina bohlinii H. Magn.), Kudratovia candidogrisea (for Rinodina candidogrisea Hafellner, Muggia et Obermayer), Kudratovia luridata (for Buellia luridata Körb.), Kudratovia metaboliza (for Rinodina metaboliza Vain.), Kudratovia pycnocarpa (for Rinodina pycnocarpa H. Magn.), Kudratovia roscida (for Lecanora roscida Sommerf.), Kudratovia straussii (for Rinodina straussii J. Steiner), Kudratovia terrestris (for Rinodina terrestris Tomin), Kurokawia bryorum (for Anaptychia bryorum Poelt), Kurokawia isidiata (for Anaptychia isidiata Tomin), Kurokawia mereschkowskii (for Physcia mereschkowskii Tomin), Kurokawia palmulata (for Psoroma palmulatum Michx.), Kurokawia runcinata (for Lichen runcinatus With.), Kurokawia stippea (for Parmelia aquila var. stippea Ach.), Lecania safavidiorum (for Oxnerella safavidiorum S. Y. Kondr., Zarei-Darki, Lőkös et Hur), Leucodermia erinacea (for Lichen erinaceus Ach.), Mischoblastia confragosula (for Lecanora confragosula Nyl.), Mischoblastia destituta (for Lecidea destituta Nyl.), Mischoblastia moziana (for Lecanora moziana Nyl.), Mischoblastia moziana subsp. parasitica (comb. et stat. nova for Rinodina moziana var. parasitica Kaschik et H. Mayrhofer), Mischoblastia ramboldii (for Rinodina ramboldii Kaschik), Mischoblastia vezdae (for Rinodina vezdae H. Mayrhofer), Oxnerella afghanica (for Rinodina afghanica M. Steiner et Poelt), Oxnerella castanomelodes (for Rinodina castanomelodes H. Mayrhofer et Poelt), Physciella nigricans (for Lecanora nigricans Flörke), Poeltonia elegantula (for Physconia elegantula Essl.), Poeltonia grisea (for Lichen griseus Lam.), Poeltonia isidiomuscigena (for Physconia isidiomuscigena Essl.), Poeltonia perisidiosa (for Physcia perisidiosa Erichsen), Poeltonia venusta (for Parmelia venusta Ach.), and Polyblastidium albicans (for Parmelia albicans Pers.) are proposed.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Sahar Khodami ◽  
J. Vaun McArthur ◽  
Leocadio Blanco-Bercial ◽  
Pedro Martinez Arbizu

Abstract For the first time, the phylogenetic relationships between representatives of all 10 copepod orders have been investigated using 28S and 18S rRNA, Histone H3 protein and COI mtDNA. The monophyly of Copepoda (including Platycopioida Fosshagen, 1985) is demonstrated for the first time using molecular data. Maxillopoda is rejected, as it is a polyphyletic group. The monophyly of the major subgroups of Copepoda, including Progymnoplea Lang, 1948 (=Platycopioida); Neocopepoda Huys and Boxshall, 1991; Gymnoplea Giesbrecht, 1892 (=Calanoida Sars, 1903); and Podoplea Giesbrecht, 1892, are supported in this study. Seven copepod orders are monophyletic, including Platycopioida, Calanoida, Misophrioida Gurney, 1933; Monstrilloida Sars, 1901; Siphonostomatoida Burmeister, 1834; Gelyelloida Huys, 1988; and Mormonilloida Boxshall, 1979. Misophrioida (=Propodoplea Lang, 1948) is the most basal Podoplean order. The order Cyclopoida Burmeister, 1835, is paraphyletic and now encompasses Poecilostomatoida Thorell, 1859, as a sister to the family Schminkepinellidae Martinez Arbizu, 2006. Within Harpacticoida Sars, 1903, both sections, Polyarthra Lang, 1948, and Oligoarthra Lang, 1948, are monophyletic, but not sister groups. The order Canuelloida is proposed while maintaining the order Harpacticoida s. str. (Oligoarthra). Cyclopoida, Harpacticoida and Cyclopinidae are redefined, while Canuelloida ordo. nov., Smirnovipinidae fam. nov. and Cyclopicinidae fam. nov are proposed as new taxa.


2020 ◽  
Vol 62 (3-4) ◽  
pp. 309-391
Author(s):  
G. K. Mishra ◽  
D. K. Upreti ◽  
S. Nayaka ◽  
A. Thell ◽  
I. Kärnefelt ◽  
...  

The present study recorded 36 genera and 115 species of the lichen family Teloschistaceae in India. Three species, i.e. Caloplaca rajasthanica S. Y. Kondr., Upreti et G. P. Sinha, Huriella upre- tiana S. Y. Kondr., G. K. Mishra, Nayaka et A. Thell, and Squamulea uttarkashiana S. Y. Kondr., Upreti, Nayaka et A. Thell, are described as new species. Seven new combinations, i.e. Fulgo- gasparrea awasthii (Y. Joshi et Upreti) S. Y. Kondr., Upreti et A. Thell, Neobrownliella cinnabarina (Ach.) S. Y. Kondr., Upreti et A. Thell, Neobrownliella holochracea (Nyl.) S. Y. Kondr., Upreti et A. Thell, Opeltia flavorubescens (Huds.) S. Y. Kondr. et J.-S. Hur, Oxneriopsis bassiae (Willd. ex Ach.) S. Y. Kondr., Upreti et J.-S. Hur, Upretia hueana (B. de Lesd.) S. Y. Kondr. et Upreti and Megaspora subpoliotera (Y. Joshi et Upreti) S. Y. Kondr., Upreti et A. Thell, are proposed based on nrITS phylogeny in the Teloschistaceae and Megasporaceae consequently. Validation of combination Olegblumia demissa is provided. Molecular data on Fulgogasparrea awasthii andMegaspora subpoliotera are recorded from India for the first time. Four new genera including one species each, i.e. Lazarenkoiopsis ussuriensis (Oxner, S. Y. Kondr. et Elix) S. Y. Kondr., L. őkö et J.-S. Hur, Mikhtomia gordejevii (Tomin) S. Y. Kondr., Kärnefelt, Elix, A. Thell, J. Kim, A. S. Kondratiuk et J.-S. Hur, Olegblumia demissa (Flot.) S. Y. Kondr., L. őkö, J. Kim, A. S. Kond- ratiuk, S.-O. Oh et J.-S. Hur and Pachypeltis intrudens (H. Magn.) Sochting Froden et Arup, as well as the genus Megaspora are reported as new for the Indian lichen biota.Out of the eight lichenogeographical regions of India, the Western Himalayas show the maximum diversity of Teloschistaceae members represented with 110 species followed by the Central Indian region with 38 species. The lichen genus Caloplaca is represented with 50 species in the country followed by Athallia and Rusavskia with 6 species each. The saxi- colous taxa exhibit dominance with 65 species whereas the corticolous and terricolous taxa are represented by 48 and 9 species, respectively. Among the different states of India, Ut- tarakhand showed the maximum diversity represented by 54 species followed by the state of Jammu & Kashmir with 37 species, whereas the Jharkhand and Meghalaya states are represented only by the occurrence of a single species each. A key to the genera and species together with the description, basionyms and synonyms of each species are provided.


2020 ◽  
Vol 62 (3-4) ◽  
pp. 225-291
Author(s):  
S. Y. Kondratyuk ◽  
L. Lőkös ◽  
S.-O. Oh ◽  
T. O. Kondratiuk ◽  
I. Yu. Parnikoza ◽  
...  

Fourteen species new for science are described, illustrated and compared with closely related taxa. Six species of them are from South Korea, i.e. Bryostigma huriellae S. Y. Kondr. et J.-S. Hur, Caloplaca ulleungensis S. Y. Kondr., L. Lőkös et J.-S. Hur, Enterographa dokdoensis S. Y. Kondr. et J.-S. Hur, Neobrownliella salyangensis S. Y. Kondr. et J.-S. Hur, Rufoplaca aesan- ensis S. Y. Kondr. et J.-S. Hur, Squamulea coreana S. Y. Kondr. et J.-S. Hur, and seven species are from Chile: Caloplaca nothocitrina S. Y. Kondr. et J.-S. Hur, Caloplaca nothoholocarpa S. Y. Kondr. et J.-S. Hur, Caloplaca patagoniensis S. Y. Kondr., S.-O. Oh et J.-S. Hur, Follmannia suborthoclada S. Y. Kondr. et J.-S. Hur, ‘Lecidea’buellielloides S. Y. Kondr. et J.-S. Hur, Mass- jukiella rusavskioides S. Y. Kondr. et J.-S. Hur, Rehmanniella poeltiana S. Y. Kondr. et J.-S. Hur, as well as one species, i.e. Pyrenodesmia vernadskiensis S. Y. Kondr., T. O. Kondratiuk et I. Yu. Parnikoza, similar to Antarctic endemic species Huea coralligera, is from Argentine Islands, Western Antarctic Peninsula. The member of the genus Pyrenodesmia A. Massal. is for the first time confirmed by molecular data from the Antarctic.Eighteen new combinations, i.e. Massjukiella impolita (for Caloplaca impolita Arup), Massjukiella pollinarioides (for Xanthoria pollinarioides L. Lindblom et D. M. Wright), Massjukiella stellata (for Caloplaca stellata Wetmore et Karnefelt), Massjukiella tenax (for Xanthoria tenax L. Lindblom), and Massjukiella tenuiloba (for Xanthoria tenuiloba L. Lindblom), Pyrenodesmia albopruinosa (for Biatorina albopruinosa Arnold), Pyrenodesmia ceracea (for Caloplaca ceracea J. R. Laundon), Pyrenodesmia cretensis (for Blastenia cretensis Zahlbr.), Pyrenodesmia erythrocarpa (for Patellaria erythrocarpa Pers.), Pyrenodesmia haematites (for Lecanora haematitesChaub. ex St.-Amans), Pyrenodesmia percrocata (for Blastenia percrocata Arnold), Pyrenodesmia soralifera (for Caloplaca soralifera Vondrak et Hrouzek), Pyrenodesmia transcaspica (for Lecanora transcaspica Nyl.), Pyrenodesmia viridirufa (for Lecidea viridirufa Ach.), Pyrenodesmia xerica (for Caloplaca xerica Poelt et Vezda), as well as Rehmanniella leucoxantha (for Amphilo-ma leucoxanthum Mull. Arg.), Rehmanniella syvashica (for Caloplaca syvashica Khodos., Vond- rak et Soun), and Rehmanniella subgyalectoides (for Caloplaca subgyalectoides S. Y. Kondr. et Karnefelt) are proposed.Buelliella inops and Zwackhiomyces aff. berengerianus are for the first time recorded from South America as well as from Follmannia orthoclada (as lichenicolous fungi). Caloplaca poliotera, Rinodina convexula and Rinodina kozukensis are new to the Republic of Korea, and new localities as well as illustrations for the further 13 new and rare lichen species recently described from Eastern Asia are provided too.


2020 ◽  
Vol 62 (1-2) ◽  
pp. 69-108
Author(s):  
S. Y. Kondratyuk ◽  
D. K. Upreti ◽  
G. K. Mishra ◽  
S. Nayaka ◽  
K. K. Ingle ◽  
...  

Eight species, new for science, i.e.: Lobothallia gangwondoana S. Y. Kondr., J.-J. Woo et J.-S. Hur and Phyllopsora dodongensis S. Y. Kondr. et J.-S. Hur from South Korea, Eastern Asia, Ioplaca rinodinoides S. Y. Kondr., K. K. Ingle, D. K. Upreti et S. Nayaka, Letrouitia assamana S. Y. Kondr., G. K. Mishra et D. K. Upreti, and Rusavskia indochinensis S. Y. Kondr., D. K. Upreti et S. Nayaka from India and China, South Asia, Caloplaca orloviana S. Y. Kondr. and Rusavskia drevlyanica S. Y. Kondr. et O. O. Orlov from Ukraine, Eastern Europe, as well as Xanthoria ibizaensis S. Y. Kondr. et A. S. Kondr. from Ibiza Island, Spain, Mediterranean Europe, are described, illustrated and compared with closely related taxa. Fominiella tenerifensis S. Y. Kondr., Kärnefelt, A. Thell et Feuerer is for the first time recorded from Mediterranean Europe, Huriella loekoesiana S. Y. Kondr. et Upreti is provided from Russia for the first time, and H. pohangensis S. Y. Kondr., L. Lőkös et J.-S. Hur for the first time from China, Phoma candelariellae Z. Kocakaya et Halıcı is new to Ukraine, and Staurothele frustulenta Vain. is recorded from the Forest Zone of Ukraine for the first time. Twelve new combinations, i.e.: Bryostigma apotheciorum (for Sphaeria apotheciorum A. Massal.), Bryostigma biatoricola (for Arthonia biatoricola Ihlen et Owe-Larss.), Bryostigma dokdoense (for Arthonia dokdoensis S. Y. Kondr., L. Lőkös, B. G. Lee, J.-J. Woo et J.-S. Hur), Bryostigma epiphyscium (for Arthonia epiphyscia Nyl.), Bryostigma lobariellae (for Arthonia lobariellae Etayo), Bryostigma lapidicola (for Lecidea lapidicola Taylor), Bryostigma molendoi (for Tichothecium molendoi Heufl. ex Arnold), Bryostigma neglectulum (for Arthonia neglectula Nyl.), Bryostigma parietinarium (for Arthonia parietinaria Hafellner et Fleischhacker), Bryostigma peltigerinum (for Arthonia vagans var. peltigerina Almq.), Bryostigma phaeophysciae (for Arthonia phaeophysciae Grube et Matzer), Bryostigma stereocaulinum (for Arthonia nephromiaria var. stereocaulina Ohlert), are proposed based on results of combined phylogenetic analysis based on mtSSU and RPB2 gene sequences. Thirty-one new combinations for members of the genus Polyozosia (i.e.: Polyozosia actophila (for Lecanora actophila Wedd.), Polyozosia agardhiana (for Lecanora agardhiana Ach.), Polyozosia altunica (for Myriolecis altunica R. Mamut et A. Abbas), Polyozosia antiqua (for Lecanora antiqua J. R. Laundon), Polyozosia bandolensis (for Lecanora bandolensis B. de Lesd.), Polyozosia behringii (for Lecanora behringii Nyl.), Polyozosia caesioalutacea (for Lecanora caesioalutacea H. Magn.), Polyozosia carlottiana (for Lecanora carlottiana C. J. Lewis et Śliwa), Polyozosia congesta (for Lecanora congesta Clauzade et Vězda), Polyozosia eurycarpa (for Lecanora eurycarpa Poelt, Leuckert et Cl. Roux), Polyozosia expectans (Lecanora expectans Darb.), Polyozosia flowersiana (Lecanora flowersiana H. Magn.), Polyozosia fugiens (for Lecanora fugiens Nyl.), Polyozosia invadens (for Lecanora invadens H. Magn.), Polyozosia juniperina (for Lecanora juniperina Śliwa), Polyozosia latzelii (for Lecanora latzelii Zahlbr.), Polyozosia liguriensis (for Lecanora liguriensis B. de Lesd.), Polyozosia massei (for Myriolecis massei M. Bertrand et J.-Y. Monnat), Polyozosia mons-nivis (for Lecanora mons-nivis Darb.), Polyozosia oyensis (for Lecanora oyensis M.-P. Bertrand et Cl. Roux), Polyozosia percrenata (for Lecanora percrenata H. Magn.), Polyozosia persimilis (for Lecanora hagenii subsp. persimilis Th. Fr.), Polyozosia poeltiana (for Lecanora poeltiana Clauzade et Cl. Roux), Polyozosia prominens (for Lecanora prominens Clauzade et Vězda), Polyozosia prophetae-eliae (for Lecanora prophetae-eliae Sipman), Polyozosia salina (for Lecanora salina H. Magn.), Polyozosia schofieldii (for Lecanora schofieldii Brodo), Polyozosia sverdrupiana (for Lecanora sverdrupiana Øvstedal), Polyozosia torrida (for Lecanora torrida Vain.), Polyozosia wetmorei (for Lecanora wetmorei Śliwa), Polyozosia zosterae (for Lecanora subfusca? zosterae Ach.)) are proposed.


Phytotaxa ◽  
2014 ◽  
Vol 186 (4) ◽  
pp. 188 ◽  
Author(s):  
Ying-Ying Zhou ◽  
HONG-WEI ZHANG ◽  
JIANG-QIN HU ◽  
Xiao-Feng Jin

Sinalliaria is described here as a new genus of the family Brassicaceae from eastern China, based on the morphological characters and molecular sequences. Sinalliaria differs from the related genus Orychophragmus in having basal leaves petiolate, simple or rarely with 1‒3 lateral lobes (not pinnatisect); cauline leaves petiolate, cordate at base (not sessile, auriculate or amplexicaul at base); petals obovate to narrowly obovate, claw inconspicuous (not broadly obovate, with a claw as along as sepal); siliques truncate (not long-beaked) at apex. The microscopic characters of seed testa also show significant differences between Sinalliaria and Orychophragmus. Phylogenetic evidence from DNA sequences of nuclear ribosomal ITS and plastid region trnL-trnF indicates that Sinalliaria is a distinct group related to Orychophragmus and Raphanus, but these three genera do not form a clade. The new genus Sinalliaria is endemic to eastern China and has only one species and one variety. The new combinations, S. limprichtiana (Pax) X. F. Jin, Y. Y. Zhou & H. W. Zhang and S. limprichtiana var. grandifolia (Z. X. An) X. F. Jin, Y. Y. Zhou & H. W. Zhang are proposed here.


2016 ◽  
Vol 47 (1) ◽  
pp. 53-82 ◽  
Author(s):  
Werner P. Strümpher ◽  
Martin H. Villet ◽  
Catherine L. Sole ◽  
Clarke H. Scholtz

Extant genera and subgenera of the Trogidae (Coleoptera: Scarabaeoidea) are reviewed. Contemporary classifications of this family have been based exclusively on morphological characters. The first molecular phylogeny for the family recently provided strong support for the relationships between morphologically defined genera and subgenera. On the basis of morphological, molecular and biogeographical evidence, certain taxonomic changes to the genus-level classification of the family are now proposed. The family is confirmed as consisting of two subfamilies, Omorginae Nikolajev and Troginae MacLeay, the former with two genera,OmorgusErichson andPolynoncusBurmeister, and the latter with two genera,TroxFabricius andPhoberusMacLeaystat. rev.Phoberusis restored to generic rank to include all Afrotropical (including Madagascan endemic) species;Afromorgusis confirmed at subgeneric rank within the genusOmorgus; and the monotypic Madagascan genusMadagatroxsyn. n.is synonymised withPhoberus.The current synonymies ofPseudotroxRobinson (withTrox),ChesasBurmeister,LagopelusBurmeister andMegalotroxPreudhomme de Borre (all withOmorgus) are all accepted to avoid creating speculative synonyms before definitive phylogenetic evidence is available. New combinations resulting from restoringPhoberusto a monophyletic genus are listed in Appendix A.


2007 ◽  
Vol 76 (1) ◽  
pp. 35-54 ◽  
Author(s):  
Francesca Benzoni ◽  
Fabrizio Stefani ◽  
Jaroslaw Stolarski ◽  
Michel Pichon ◽  
Guillaume Mitta ◽  
...  

The phylogenetic relationships of the scleractinian genus Psammocora with the other genera traditionally included in the family Siderastreidae and some Fungiidae are assessed based on combined skeletal and molecular data. P. explanulata differs from the other examined congeneric species (P. contigua, P. digitata, P. nierstraszi , P. profundacella, P. superficialis, and P. stellata) in possessing interstomatous septa between adult corallites, costae, and in having continuous buttress-like structures joining septal faces (i.e., fulturae) which typically occur in fungiids. These characters are shared with Coscinaraea wellsi but not with the remainder of the examined siderastreids (the congeneric C. columna, and Anomastraea irregularis, Horastrea indica, Pseudosiderastrea tayamai, Siderastrea savignyana) whose septa are interconnected by typical synapticulae. Most of the examined species form septa with distinct transverse groups of centers of calcification, a biomineralization pattern typical of the Robusta clade. The observations on skeletal structures corroborate the results of the ITS2 and 5.8S molecular phylogeny. C. wellsi and P. explanulata are phylogenetically very close to each other and show closer genetic affinity with the examined Fungiidae (Halomitra pileus, Herpolitha limax, Fungia paumotensis, and Podabacia crustacea) than with the other species in the genera Psammocora and Coscinaraea, or with any other siderastreid. Our results show that neither Psammocora nor Coscinaraea are monophyletic genera. The high genetic distances between the species of Siderastreidae, especially between Pseudosiderastrea tayamai and Siderastrea savignyana on one side and the other genera on the other, suggest a deep divergence in the phylogenetic structure of the family.


2020 ◽  
Vol 34 (2) ◽  
pp. 113 ◽  
Author(s):  
Rafael Robles ◽  
Peter C. Dworschak ◽  
Darryl L. Felder ◽  
Gary C. B. Poore ◽  
Fernando L. Mantelatto

The axiidean families Callianassidae and Ctenochelidae, sometimes treated together as Callianassoidea, are shown to represent a monophyletic taxon. It comprises 265 accepted species in 74 genera, twice this number of species if fossil taxa are included. The higher taxonomy of the group has proved difficult and fluid. In a molecular phylogenetic approach, we inferred evolutionary relationships from a maximum-likelihood (ML) and Bayesian analysis of four genes, mitochondrial 16S rRNA and 12S rRNA along with nuclear histone H3 and 18S rRNA. Our sample consisted of 298 specimens representing 123 species plus two species each of Axiidae and Callianideidae serving as outgroups. This number represented about half of all known species, but included 26 species undescribed or not confidently identified, 9% of all known. In a parallel morphological approach, the published descriptions of all species were examined and detailed observations made on about two-thirds of the known fauna in museum collections. A DELTA (Description Language for Taxonomy), database of 135 characters was made for 195 putative species, 18 of which were undescribed. A PAUP analysis found small clades coincident with the terminal clades found in the molecular treatment. Bayesian analysis of a total-evidence dataset combined elements of both molecular and morphological analyses. Clades were interpreted as seven families and 53 genera. Seventeen new genera are required to reflect the molecular and morphological phylograms. Relationships between the families and genera inferred from the two analyses differed between the two strategies in spite of retrospective searches for morphological features supporting intermediate clades. The family Ctenochelidae was recovered in both analyses but the monophyly of Paragourretia was not supported by molecular data. The hitherto well recognised family Eucalliacidae was found to be polyphyletic in the molecular analysis, but the family and its genera were well defined by morphological synapomorphies. The phylogram for Callianassidae suggested the isolation of several species from the genera to which they had traditionally been assigned and necessitated 12 new generic names. The same was true for Callichiridae, with stronger ML than Bayesian support, and five new genera are proposed. Morphological data did not reliably reflect generic relationships inferred from the molecular analysis though they did diagnose terminal taxa treated as genera. We conclude that discrepancies between molecular and morphological analyses are due at least in part to missing sequences for key species, but no less to our inability to recognise unambiguously informative morphological synapomorphies. The ML analysis revealed the presence of at least 10 complexes wherein 2–4 cryptic species masquerade under single species names.


Zootaxa ◽  
2018 ◽  
Vol 4434 (2) ◽  
pp. 265
Author(s):  
GEOVANNI M. RODRÍGUEZ-MIRÓN

A checklist of the Megalopodidae of the world is presented. A total of 582 species in 29 genera and 11 subgenera are recognized belonging to the three subfamilies. The subfamilies, genera, and species are listed in alphabetical order. For each species, synonymous names and the geographical distribution by country is provided. The most diversified subfamily is Megalopodinae with 480 species and 24 genera. The Neotropical biogeographic region has the highest diversity of Megalopodidae, followed by the Ethiopian region. The knowledge of Megalopodidae is limited, and is remarkably biased by country. A significant increase in geographic and taxonomic information is needed in order to fill these knowledge gaps. The following taxonomic and nomenclatural changes are proposed: 1) type species are designated for the genera Macrolopha Weise and Falsomegalopus Pic. 2) Zeugophora novobicolor Rodríguez-Mirón is proposed as new replacement name of Zeugophora bicolor. 3) The following taxa are reinstated in the genera Temnaspis: T. speciosus Baly, T. arida Westwood, and T. nigriceps Baly. 4) Falsotemnaspis luteimembris Pic is proposed as new synonym (= F. lacordairei (Westwood)). 5) The next new combinations are proposed: Macrolopha bicolor (Jacoby), M. carinata (Bryant), M. centromaculata (Jacoby), M. costatipennis (Pic), M. dollmani (Bryant), M. hargreavesi (Bryan), M. mashuana (Jacoby), M. murrayi (Baly), M. neavei (Bryant), M. nyassae (Bryant), M. suturalis (Clavareau), M. variabilis (Westwood), M. aeneipennis (Weise), M. notaticollis (Pic), M. parvula (Weswood), M. theresae (Pic), M. tricoloripes (Pic) and Falsotemnaspis lacordairei (Westwood). 


Sign in / Sign up

Export Citation Format

Share Document