scholarly journals Production of plant protection agents in medium containing waste glycerol by Streptomyces hygroscopicus: Bioprocess analysis

2020 ◽  
Vol 49 (3) ◽  
pp. 270-277
Author(s):  
I. Mitrović ◽  
J. Grahovac ◽  
J. Dodić ◽  
A. Jokić ◽  
Z. Rončević ◽  
...  

The surplus of waste glycerol, by-product of the biodiesel production process, is available at the global market. Some species of the genera Streptomyces have the ability to assimilate glycerol and convert it into valuable metabolic products. In the present study, the ability of Streptomyces hygroscopicus to assimilate waste glycerol and convert it into metabolic compounds with antifungal activity against four phytopathogenic fungi obtained from apple fruit samples expressing rot symptoms, was investigated. Production of antifungal metabolites by S. hygroscopicus was carried out in 3 l stirred tank bioreactor through 7 days. Fermentation was carried out at 27 °C with aeration rate of 1.5 vvm and agitation rate of 100 r.p.m. The aim of this work was to analyse bioprocess parameters and to determine at which stage of bioprocess the production of antifungal metabolites occurs. Activity of the cultivation liquid on two isolates of Alternaria alternata and two isolates of Fusarium avenaceum were determined every 12 h using in vitro well diffusion method. It was found that the maximum production of antifungal metabolites occurred at 108 hour of cultivation. Formed inhibition zones have shown that the produced antifungal metabolites have high efficacy on tested phytopathogenic fungi (inhibition zone diameter higher than 35 mm for all test organisms).

2017 ◽  
pp. 231-244 ◽  
Author(s):  
Ivana Mitrovic ◽  
Jovana Grahovac ◽  
Jelena Dodic ◽  
Mila Grahovac ◽  
Sinisa Dodic ◽  
...  

The application of antifungal compounds produced by microorganisms in the control of plant diseases caused by phytopathogenic fungi is a promising alternative to synthetic pesticides. Among phytopathogenic fungi, Alternaria alternata and Fusarium avenaceum are significant pathogens responsible for the storage rot of apple fruits. During storage, transport and marketing A. alternata and F. avenaceum can cause significant losses of apple fruits and their control is of great importance for the producers and consumers. In the present study, the effects of agitation rate on the production of antifungal methabolite( s) by Streptomyces hygroscopicus in a 3-L lab-scale bioreactor (Biostat? Aplus, Sartorius AG, Germany) against two isolates of A. alternata and two isolates of F. avenaceum were investigated. The cultivation of S. hygroscopicus was carried out at 27?C with agitation rates of 100 rpm and 200 rpm during 7 days. The aim was to analyze the bioprocess parameters of biofungicide production in a medium containing glycerol as a carbon source, and examine the effect of agitation rate on the production of antifungal metabolite(s). The in vitro antifungal activity of the produced metabolites against fungi from the genera Alternaria and Fusarium grown on potato dextrose agar medium was determined every 24 h using wells technique. In the experiments conducted in the bioreactor at different stirring speeds, it was found that the maximum production of antifungal metabolites occurred after 96 hours of cultivation. A higher consumption of nutrients and a larger inhibition zone diameter was registered in the experiment with an agitation rate of 200 rpm.


2021 ◽  
Vol 9 (A) ◽  
pp. 1081-1085
Author(s):  
Margaret Oniha ◽  
Angela Eni ◽  
Olayemi Akinnola ◽  
Emmanuel Adedayo Omonigbehin ◽  
Eze Frank Ahuekwe ◽  
...  

BACKGROUND: Plants remain the natural sources of efficacious phytonutrients with beneficial assets to mankind against microbial disorders. Diverse folklores have reported the roles of medicinal plants in the remedies of various disorders in man and animals. Metabolites and pesticides from the plant origin are considered better alternatives due to favorable environmental impact as compared to the synthetic counterparts. Significant economic losses and hindrance of global papaya production are due to fungal diseases. Phytochemicals have made medicinal plants become sources of environmentally friendly alternative antimicrobials. AIM: This study aimed at assessing the antifungal activity of leaf extracts of Moringa oleifera against phytopathogenic fungi isolated from Carica papaya. METHODS: n-Hexane, ethyl acetate, ethanol, methanol, and aqueous extracts of M. oleifera leaves were evaluated for their antifungal properties. Agar well-diffusion method was implemented for in vitro screening, minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of the extract types against fungal species of Aspergillus, Penicillium, Rhizopus, and Trichoderma. RESULTS: All the extracts evaluated inhibited fungal growth to some degree, with the aqueous extract exhibiting more inhibitory activities than the organic extracts. There was significant inhibition of fungal development by the tested plant extracts at different concentrations. MIC of the extracts was 15.625 mg/ml while the MFC values ranged between 15.625 and 31.25. In this work, the antifungal activity of M. oleifera was found to be equal or higher than commercially available fungicide, ketoconazole. CONCLUSION: The results of this study indicate that foliole extracts of M. oleifera have potential for use as biofungicides for plant protection against fungal diseases.


Author(s):  
Mohammad Shahid ◽  
Bansh Narayan Singh ◽  
Shaloo Verma ◽  
Prassan Choudhary ◽  
Sudipta Das ◽  
...  

Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 37
Author(s):  
Krishni Fernando ◽  
Priyanka Reddy ◽  
Kathryn M. Guthridge ◽  
German C. Spangenberg ◽  
Simone J. Rochfort

Epichloë endophytes, fungal endosymbionts of Pooidae grasses, are commonly utilized in forage and turf industries because they produce beneficial metabolites that enhance resistance against environmental stressors such as insect feeding and disease caused by phytopathogen infection. In pastoral agriculture, phytopathogenic diseases impact both pasture quality and animal production. Recently, bioactive endophyte strains have been reported to secrete compounds that significantly inhibit the growth of phytopathogenic fungi in vitro. A screen of previously described Epichloë-produced antifeedant and toxic alkaloids determined that the antifungal bioactivity observed is not due to the production of these known metabolites, and so there is a need for methods to identify new bioactive metabolites. The process described here is applicable more generally for the identification of antifungals in new endophytes. This study aims to characterize the fungicidal potential of novel, ‘animal friendly’ Epichloë endophyte strains NEA12 and NEA23 that exhibit strong antifungal activity using an in vitro assay. Bioassay-guided fractionation, followed by metabolite analysis, identified 61 metabolites that, either singly or in combination, are responsible for the observed bioactivity. Analysis of the perennial ryegrass-endophyte symbiota confirmed that NEA12 and NEA23 produce the prospective antifungal metabolites in symbiotic association and thus are candidates for compounds that promote disease resistance in planta. The “known unknown” suite of antifungal metabolites identified in this study are potential biomarkers for the selection of strains that enhance pasture and turf production through better disease control.


2021 ◽  
Vol 10 (1) ◽  
pp. 41-45
Author(s):  
Slavica Ilić ◽  
Jovan Ćirić ◽  
Gordana Gojgić-Cvijović

In this paper we studied the effect of different amino acids (arginine, tryptophan, tyrosine, and phenylalanine) as nitrogen sources on the growth of actinomycete Streptomyces hygroscopicus CH-7 and the consumption of crude glycerol, obtained as a by-product in the biodiesel production from sunflower oil. The highest biomass concentration (9.5 g/L) was achieved using the basic medium and the medium with tryptophan (9.2 g/L), while the crude glycerol consumption was the highest in the basic medium (5.9 mg/mL) and the medium with phenylalanine (3.3 mg/mL).


2017 ◽  
Author(s):  

For Plant Protection and Quarantine (PPQ) and our partners, 2016 was a year of remarkable successes. Not only did we eradicate 10 fruit fly outbreaks, but we also achieved 4 years with zero detections of pink bollworm, moving us one step closer to eradicating this pest from all commercial cotton-growing areas of the continental United States. And when the U.S. corn industry faced the first-ever detection of bacterial leaf streak (Xanthomonas vasicular pv vasculorum), we devised a practical and scientific approach to manage the disease and protect valuable export markets. Our most significant domestic accomplishment this year, however, was achieving one of our agency’s top 10 goals: eliminating the European grapevine moth (EGVM) from the United States. On the world stage, PPQ helped U.S. agriculture thrive in the global market-place. We worked closely with our international trading partners to develop and promote science-based standards, helping to create a safe, fair, and predictable agricultural trade system that minimizes the spread of invasive plant pests and diseases. We reached critical plant health agreements and resolved plant health barriers to trade, which sustained and expanded U.S. export markets valued at more than $4 billion. And, we helped U.S. producers meet foreign market access requirements and certified the health of more than 650,000 exports, securing economic opportunities for U.S. products abroad. These successes underscore how PPQ is working every day to keep U.S. agriculture healthy and profitable.


2020 ◽  
Vol 16 ◽  
pp. 100250
Author(s):  
Guilherme Silva Torrezan ◽  
Carlos Roberto Polaquini ◽  
Marcelo Freitas Lima ◽  
Luis Octavio Regasini

Sign in / Sign up

Export Citation Format

Share Document