scholarly journals The measurable parameters of balance trainings in case of young healthy adults: Improved balance confidence or better postural stability? A pilot study

Author(s):  
G. Posa ◽  
D. Farkasinszky ◽  
T. Margithazi ◽  
E. Nagy

AbstractPurposeThe objective of this pilot study was to compare the effects of two parallel balance trainings on postural sway and balance confidence. The study was performed in different contexts with stable vs. unstable base of support and balance confidence was measured with a scale modified for young adults with higher functional level.Materials/methodsTwenty healthy female physiotherapist students volunteered for the study and took part in a six-week balance training intervention. They were randomly assigned to two groups training on different support surfaces. Postural sway was recorded under various conditions: on different surfaces (firm, foam) and with different visual conditions (eyes open (EO), eyes closed (EC)). Modified Activities-specific Balance Confidence (mABC) scale was self-evaluated.ResultsBoth types of training caused a significant improvement in the mABC scores. The sway path increased after the training in the less challenging balance situations. We found a tendency of decreasing sway path only in the more challenging balance situations, that is standing on foam mounted on force plate with EC.ConclusionsConsidering the improved balance confidence in the case of both groups, we suggest that an increase in sway path after balance training may be the behavioural sign of the higher confidence in the less challenging balance situations.

2021 ◽  
Vol 15 ◽  
Author(s):  
Ashraf Mahmoudzadeh ◽  
Noureddin Nakhostin Ansari ◽  
Soofia Naghdi ◽  
Ehsan Ghasemi ◽  
Omid Motamedzadeh ◽  
...  

Background: Lower limb spasticity after stroke is common that can affect the balance, increase the risk of falling, and reduces the quality of life.Objective: First, evaluate the effects of spasticity severity of ankle plantar flexors on balance of patients after stroke. Second, to determine the relationship between the spasticity severity with ankle proprioception, passive ankle dorsiflexion range of motion (ROM), and balance confidence.Methods: Twenty-eight patients with stroke based on the Modified Modified Ashworth Scale (MMAS) were divided into two groups: High Spasticity Group (HSG) (MMAS > 2) (n = 14) or a Low Spasticity Group (LSG) (MMAS ≤ 2) (n = 14). The MMAS scores, Activities-Specific Balance Confidence Questionnaire, postural sway of both affected and non-affected limbs under the eyes open and eyes closed conditions, timed up and go (TUG) test, passive ankle dorsiflexion ROM, and ankle joint proprioception were measured.Results: The ankle joint proprioception was significantly better in the LSG compared to the HSG (p = 0.01). No significant differences were found between the LSG and HSG on all other outcome measures. There were no significant relationships between the spasticity severity and passive ankle dorsiflexion ROM, and balance confidence.Conclusion: The severity of ankle plantar flexor spasticity had no effects on balance of patients with stroke. However, the ankle joint proprioception was better in patients with low spasticity. Our findings suggest that the balance is affected regardless of the severity of the ankle plantar flexor spasticity in this group of participants with stroke.


2017 ◽  
Vol 25 (3) ◽  
pp. 345-350 ◽  
Author(s):  
Daniel Leightley ◽  
Moi Hoon Yap ◽  
Jessica Coulson ◽  
Mathew Piasecki ◽  
James Cameron ◽  
...  

The aim of this study was to compare postural sway during a series of static balancing tasks and during five chair rises between healthy young (mean [SEM], age 26 [1] years), healthy old (age 67 [1] years) and master athlete runners (age 67 [1] years; competing and training for the previous 51 [5] years) using the Microsoft Kinect One. The healthy old had more sway than the healthy young in all balance tasks. The master athletes had similar sway to young athletes during two-leg balancing and one-leg standing with eyes open. When balancing on one leg with eyes closed, both the healthy old and the master athletes had around 17-fold more sway than the young athletes. The healthy old and master athletes also had less anterio-posterior movement during chair rising compared with young athletes. These results suggest that masters runners are not spared from the age-associated decline in postural stability and may benefit from specific balance training.


Author(s):  
Lara A. Thompson ◽  
Joao Augusto Renno Brusamolin ◽  
Jelani Guise ◽  
Mehdi Badache ◽  
Sandy Collado Estrada ◽  
...  

The purpose of this study was to investigate the effects of utilizing sensory (i.e., vision and touch), as well as static and dynamic base of support training on the balance of senior participants aged 60–80 years old. For each participant, there were several weeks of training, two sessions per week and assessments every two weeks. Training included walking and standing exercises on a hard surface, compliant and stiffer foam walking and standing balance training, and navigating obstacles. Within each session, to modify vision, all training included eyes-open and closed. Further, there were increases in training difficulty as the sessions progressed. It was observed that training over several weeks resulted in increases in stability, as observed by the decreases in Balance Error Scoring System (BESS) assessment results. However, increases in balance confidence, as observed by the Activities-Specific Balance Confidence (ABC) scale were less certain in this healthy elderly (or senior) population. It is an interesting and positive finding that, in doing relatively simple, but targeted exercises and training, senior individuals can have moderate improvements in their balance and, perhaps ultimately, reduce their fall-risk.


Author(s):  
Jennifer M. Schmit ◽  
Deanna I. Rejacques ◽  
Michael A. Riley

The present study is designed to address the relationship between postural sway and balance training. We compared postural sway in a group of trained dancers to a group of physically fit, untrained participants (control group) in order to assess enhanced postural control with balance training, particularly under challenging balance conditions. We varied the difficulty of postural control by using two surface conditions (rigid surface, foam surface) and two visual conditions (eyes open, eyes closed), factorially combined. The data were evaluated using 1-between (group) × 2-within (vision and surface) analyses of variance (ANOVA). The three dependent variables were the standard deviation of the COP time series in the anterior-posterior (AP) and medial-lateral (ML) axes, and the COP path length. Significant main effects were found for surface and vision and the surface*vision interaction in all conditions. Significant group differences were found in the AP and ML axes. The results of this study indicate that balance training enhances the control of posture. Thus, it may be useful to provide balance training to workers who must operate under conditions that threaten balance.


2019 ◽  
Vol 8 (5) ◽  
pp. 81
Author(s):  
Recep Soslu

Balance is the process of maintaining the body center of gravity vertically over the base of support and relies on rapid, continuous feedback and integration of afferent information coming from three sensory components, that is somatosensory, visual, and vestibular systems, resulting in smooth and coordinated neuromuscular actions. To investigate the effects of fatigue index on the static balance of sportsmen. A total of 51 male elite sportsmen from 4 different sports branches (Football players: 19, Volleyball players: 13, Skiers: 10 and Athletes: 9) participated in the study. The Wingate anaerobic power and capacity test was applied to induce fatigue. The Technobody isokinetic balance meter (Pro-Kin. CSMI) was used to measure pre- and post-fatigue static balance. There was a significant interaction between dependent (pre and post test balance) and independent (test statue and sport branches) variables were observed (F(63,1031.14) = 1.59, η2 = .07, p ˂ .05). Main effect results showed that pre-fatigue balance values were significantly different than post-fatigue balance values in all groups (F(1.14, 213.91) = 177.99, η2 = .49, p ˂ .05).Moreover, significant differences were identified between pre- and post-fatigue test results in sport branches (F(3.188) = 4.12, ƞ2 = .06, p < .05) and test statue (eyes open and closed) (F(3.188) = 3.32, ƞ2 = .05, p < .05). Bonferonni follow-up test indicated that there was a significant increase from footballers’ average static balance to the athletes’ average static balance (p ˂ .05). In test statue, pre fatigue eyes closed values were significantly different than post fatigue eyes opened values (p ˂ .05). Static balance training should be included in the training to be performed, fatigue static balance training should be performed in team and individual sports and the content of the training should be reorganized in line with the results obtained.


2015 ◽  
Vol 50 (4) ◽  
pp. 343-349 ◽  
Author(s):  
Abby Mettler ◽  
Lisa Chinn ◽  
Susan A. Saliba ◽  
Patrick O. McKeon ◽  
Jay Hertel

Context Chronic ankle instability (CAI) occurs in some people after a lateral ankle sprain and often results in residual feelings of instability and episodes of the ankle's giving way. Compared with healthy people, patients with CAI demonstrated poor postural control and used a more anteriorly and laterally positioned center of pressure (COP) during a single-limb static-balance task on a force plate. Balance training is an effective means of altering traditional COP measures; however, whether the overall location of the COP distribution under the foot also changes is unknown. Objective To determine if the spatial locations of COP data points in participants with CAI change after a 4-week balance-training program. Design Randomized controlled trial. Setting Laboratory. Patients or Other Participants Thirty-one persons with self-reported CAI. Intervention(s) Participants were randomly assigned to a 4-week balance-training program or no balance training. Main Outcome Measure(s) We collected a total of 500 COP data points while participants balanced using a single limb on a force plate during a 10-second trial. The location of each COP data point relative to the geometric center of the foot was determined, and the frequency count in 4 sections (anteromedial, anterolateral, posteromedial, posterolateral) was analyzed for differences between groups. Results Overall, COP position in the balance-training group shifted from being more anterior to less anterior in both eyes-open trials (before trial = 319.1 ± 165.4, after trial = 160.5 ± 149.5; P = .006) and eyes-closed trials (before trial = 387.9 ± 123.8, after trial = 189.4 ± 102.9; P < .001). The COP for the group that did not perform balance training remained the same in the eyes-open trials (before trial = 214.1 ± 193.3, after trial = 230.0 ± 176.3; P = .54) and eyes-closed trials (before trial = 326.9 ± 134.3, after trial = 338.2 ± 126.1; P = .69). Conclusions In participants with CAI, the balance-training program shifted the COP location from anterolateral to posterolateral. The program may have repaired some of the damaged sensorimotor system pathways, resulting in a more optimally functioning and less constrained system.


2017 ◽  
Vol 5 (2) ◽  
pp. 267-279 ◽  
Author(s):  
Michael Duncan ◽  
Elizabeth Bryant ◽  
Mike Price ◽  
Samuel Oxford ◽  
Emma Eyre ◽  
...  

This study examined postural sway in children in eyes open (EO) and eyes closed (EC) conditions, controlling for body mass index (BMI) and physical activity (PA). Sixty two children (aged 8–11years) underwent sway assessment using computerized posturography from which 95% ellipse sway area, anterior/posterior (AP) sway, medial/lateral (ML) sway displacement and sway velocity were assessed. Six trials were performed alternatively in EO and EC. BMI (kg/m2) was determined from height and mass. PA was determined using sealed pedometry. AP amplitude (p = .038), ML amplitude (p = .001), 95% ellipse (p = .0001), and sway velocity (p = .012) were higher in EC compared with EO conditions. BMI and PA were not significant as covariates. None of the sway variables were significantly related to PA. However, sway velocity during EO (p = .0001) and EC (p = .0001) was significantly related to BMI. These results indicate that sway is poorer when vision is removed, that BMI influences sway velocity, but that pedometer-assessed PA was not associated with postural sway.


2018 ◽  
Vol 8 (7) ◽  
pp. 134 ◽  
Author(s):  
Daniel Blackburn ◽  
Yifan Zhao ◽  
Matteo De Marco ◽  
Simon Bell ◽  
Fei He ◽  
...  

Background: The incidence of Alzheimer disease (AD) is increasing with the ageing population. The development of low cost non-invasive diagnostic aids for AD is a research priority. This pilot study investigated whether an approach based on a novel dynamic quantitative parametric EEG method could detect abnormalities in people with AD. Methods: 20 patients with probable AD, 20 matched healthy controls (HC) and 4 patients with probable fronto temporal dementia (FTD) were included. All had detailed neuropsychology along with structural, resting state fMRI and EEG. EEG data were analyzed using the Error Reduction Ratio-causality (ERR-causality) test that can capture both linear and nonlinear interactions between different EEG recording areas. The 95% confidence intervals of EEG levels of bi-centroparietal synchronization were estimated for eyes open (EO) and eyes closed (EC) states. Results: In the EC state, AD patients and HC had very similar levels of bi-centro parietal synchronization; but in the EO resting state, patients with AD had significantly higher levels of synchronization (AD = 0.44; interquartile range (IQR) 0.41 vs. HC = 0.15; IQR 0.17, p < 0.0001). The EO/EC synchronization ratio, a measure of the dynamic changes between the two states, also showed significant differences between these two groups (AD ratio 0.78 versus HC ratio 0.37 p < 0.0001). EO synchronization was also significantly different between AD and FTD (FTD = 0.075; IQR 0.03, p < 0.0001). However, the EO/EC ratio was not informative in the FTD group due to very low levels of synchronization in both states (EO and EC). Conclusion: In this pilot work, resting state quantitative EEG shows significant differences between healthy controls and patients with AD. This approach has the potential to develop into a useful non-invasive and economical diagnostic aid in AD.


2020 ◽  
pp. 003151252094509
Author(s):  
Mark Walsh ◽  
Caroline Church ◽  
Audrey Hoffmeister ◽  
Dean Smith ◽  
Joshua Haworth

Measurements of postural sway are used to assess physiological changes due to therapy or sport training, or to describe group differences based on activity history or disease status. Portable force plates have been widely adopted for this purpose, leading us in this study to validate with linear and nonlinear metrics the posturographic data derived from both a portable plate (Natus) when compared to an in-ground plate (Bertec). Twenty participants stood on each plate for two trials each, with and without a foam perturbation and with and without eyes open on each surface. We calculated measures of path length, range, root mean squares, sample entropy, and correlation dimensions from center of pressure traces on each plate. An intraclass correlation coefficient across trials from each plate in each condition indicated satisfactory overall reliability (ICC consistency), supporting the use of either plate for postural sway research and interventions. Additionally, our results generally supported common validity (ICC absolute agreement), though, the specific degree of similarity differed for each of the tested metrics of postural sway, especially when considering whether or not data was filtered. For situations in which participants cannot visit a laboratory (e.g. performing athletes, community dwelling clinical patients, and virus risk concerns) an in-home portable force plate is a trusted and valuable data collection tool.


2017 ◽  
Vol 1 (S1) ◽  
pp. 26-26
Author(s):  
Haylie Miller ◽  
Nicoleta Bugnariu ◽  
Priscila Caçola ◽  
Rita Patterson

OBJECTIVES/SPECIFIC AIMS: Individuals with autism spectrum disorder (ASD) and developmental coordination disorder (DCD) share overlap in their motor symptom profile and underlying neurology (Sumner, Leonard, & Hill, 2016, JADD). DSM-5 guidelines allow these 2 disorders to be independent or co-occurring (APA, 2013), but common clinical practice does not include systematic assessment to determine the presence or absence of co-occurring DCD in children with ASD, or vice versa. Furthermore, in many cases DCD is managed in a nonspecific manner, with schools making accommodations for a child’s motor challenges without formally assigning a diagnosis of DCD. Thus, somewhat subjective, qualitative judgments are made by clinicians to classify children as DCD, ASD, or ASD+DCD in the absence of a reliable, valid, quantitative measure to distinguish between these profiles. As a first step toward developing such a measure, researchers must tease apart the nuanced differences in the motor symptoms of these 2 developmental disorders using methods that are scalable to clinical and educational settings. These methods must also be developed with consideration for logistical variables such as cost, clinical utility of data output, and ease-of-use if they are to be transferrable to physicians, school nurses, and other community health workers outside of academic laboratory settings. To that end, we conducted 2 complementary studies: 1 in the lab and 1 in the community. METHODS/STUDY POPULATION: In the community-based study, we used an affordable, user-friendly, portable balance testing system to assess postural stability during quiet standing (feet shoulder-width apart) with eyes open for 30 seconds. Data were generated from a single force plate in the balance platform. Potential participants were screened for other medical and neurological conditions that might impact their postural stability, and those with significant comorbidities were excluded. We tested 15 children with a reported diagnosis of ASD, 8 children with suspected or diagnosed DCD who were enrolled in a motor intervention program, and 30 typically-developing (TD) children with no significant developmental history reported. The ASD group ranged in age from 7 to 20, the DCD group ranged from 7 to 10, and the TD group ranged from 7 to 19. In the lab-based study, we again obtained force plate data during quiet standing (feet shoulder-width apart) with eyes open for 30 seconds, in our system that also included full-body motion capture, virtual reality, and mobile eye tracking. (Data from these additional sources are not discussed in this disseminaton, as our current focus is on identifying a simple, scalable metric that can be used to distinguish ASD from DCD.) We tested 10 children with a diagnosis of ASD that was confirmed by the research team, 10 children with a diagnosis of DCD that was confirmed by the research team, and 5 TD children with no significant developmental history reported. The ASD group ranged in age from 7 to 18, the DCD group ranged from 8 to 12, and the TD group ranged from 9 to 18. RESULTS/ANTICIPATED RESULTS: Primary outcome measures in both studies were related to Center of Pressure (CoP), including CoP sway, CoP velocity, and amount of sway relative to the base of support. Data analysis from both studies is ongoing, but preliminary trends suggest that CoP metrics may effectively differentiate between ASD, DCD, and TD. During quiet standing, individuals with DCD exhibited the greatest postural sway. Individuals with ASD followed, having greater instability than the TD group. Differences were also evident in the velocity profiles of postural sway. DISCUSSION/SIGNIFICANCE OF IMPACT: Preliminary findings suggest that CoP offers a means of differentiating between typical and atypical development specifically with respect to motor symptoms. This simple, quantifiable measure may prove a sensitive and specific means of systematically assessing co-occurrence of ASD and DCD in clinical and educational settings, leading to more accurate diagnostic classification and tailored intervention. Future directions include conducting analyses that account for participant age and developmental stage with respect to motor skills, determining whether trends hold in a larger sample, and using advanced statistical methods to determine whether CoP variables have predictive validity in discriminating between classifications of ASD, DCD, ASD+DCD, and TD. Eye-movement data were also obtained during these tasks, and may further aid in understanding the factors contributing to atypical postural control. These 2 studies also yielded methodological findings, namely that the portable force platform carries the benefit of high ease-of-use, low cost, and portability, but also has important drawbacks. Specifically, it is not capable of registering accurate CoP data for participants who weigh <40 lbs, and the error variance for the load cells is greater than that of most nonportable, higher-end plates like those embedded in our laboratory’s platform. As technological advances continue to facilitate development of more portable, higher-resolution systems, these drawbacks may be significantly reduced. Future directions include further assessment of portable, affordable solutions for this type of testing to identify whether higher-resolution options are available, whether this added resolution increases classification accuracy, and how ease-of-use is perceived by clinical and community health workers.


Sign in / Sign up

Export Citation Format

Share Document