scholarly journals CRISPR as a Versatile Technology for Gene Activation and Genome Editing

2018 ◽  
Vol 4 ◽  
pp. 5
Author(s):  
Habib Rezanejadbardeji ◽  
Bahareh Behroozi-Asl ◽  
Raheleh Amirkhah

CRISPR/Cas system, a microbial adaptive immune system, has rapidly transformed the ways researchers can interrogate the genome. CRISPR has many advantages over traditional methods such as Transcription activator-like effector nucleases (TALEN) and Zinc-finger nucleases (ZFN). Since CRISPR discovery as an adaptive immune system used by bacterial against viruses, it has been repurposed to help in many different genome-related studies such as gene knocking in and out, gene expression upregulation and downregulation. Also CRISPR holds vast therapeutic potential for the management of genetic disorders by straight modifying disease-causing mutations. Although the Cas9 protein has been revealed to attach and cleave DNA at off-target sites, the field of Cas9 specificity is quickly progressing, with marked modifying in guide RNA choice, protein and guide engineering, innovative enzymes, and off-target recognition methods. In current review we mostly focus on CRISPR unique ability in gene activation/ upregulation, which has wide applications in different aspects such as gene studies, stem cell differentiation, and trans-differentiation. Compared to other gene activation methods such as viral gene overexpression, TALEN and ZFN, CRISPR offers many benefits such as easy designing and high precision.

2021 ◽  
Vol 5 (1) ◽  
pp. 19-33
Author(s):  
Priyanka Ray ◽  
Noor Haideri ◽  
Inamul Haque ◽  
Omar Mohammed ◽  
Saborni Chakraborty ◽  
...  

Since the early days marking the first use of nanomedicine in the early 80s, there has been a meaningful change in the scientific field involving the Fabrication, characterization, and application of nanomaterials to treat many diseases, including cancers and genetic disorders. As unique and attractive properties of this novel class of materials unraveled, significant advances and discoveries were made over time. Addressing several challenges posed by conventional therapy, which were the only available treatment option for ailing patients, nanomedicine provided enhanced benefits, including reduced dosing, improved pharmacokinetics, and superior targeting efficiency. Several such formulations have successfully made their way to clinics and have shown promise in prolonging terminally ill patient populations' survival rates. However, the complex immune system and its various components, including various proteins and surface receptors, have made nanomaterials' journey from benchtop to the bedside a treacherous one. The innate and adaptive immune system interactions with nanomaterials are still under investigation and full of mysteries. This review highlights the various aspects of therapeutic nanocarriers and their current understanding of their immune systems' interactions.


2020 ◽  
Vol 21 (24) ◽  
pp. 9604
Author(s):  
Edyta Janik ◽  
Marcin Niemcewicz ◽  
Michal Ceremuga ◽  
Lukasz Krzowski ◽  
Joanna Saluk-Bijak ◽  
...  

The discovery of clustered, regularly interspaced short palindromic repeats (CRISPR) and their cooperation with CRISPR-associated (Cas) genes is one of the greatest advances of the century and has marked their application as a powerful genome engineering tool. The CRISPR–Cas system was discovered as a part of the adaptive immune system in bacteria and archaea to defend from plasmids and phages. CRISPR has been found to be an advanced alternative to zinc-finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN) for gene editing and regulation, as the CRISPR–Cas9 protein remains the same for various gene targets and just a short guide RNA sequence needs to be altered to redirect the site-specific cleavage. Due to its high efficiency and precision, the Cas9 protein derived from the type II CRISPR system has been found to have applications in many fields of science. Although CRISPR–Cas9 allows easy genome editing and has a number of benefits, we should not ignore the important ethical and biosafety issues. Moreover, any tool that has great potential and offers significant capabilities carries a level of risk of being used for non-legal purposes. In this review, we present a brief history and mechanism of the CRISPR–Cas9 system. We also describe on the applications of this technology in gene regulation and genome editing; the treatment of cancer and other diseases; and limitations and concerns of the use of CRISPR–Cas9.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1510
Author(s):  
Olga Yajuk ◽  
Maya Baron ◽  
Sapir Toker ◽  
Tamir Zelter ◽  
Tanya Fainsod-Levi ◽  
...  

The PD-L1/PD-1 axis mediates immune tolerance and promotes tumor growth and progression via the inhibition of anti-tumor immunity. Blocking the interaction between PD-L1 and PD-1 was clinically shown to be beneficial in maintaining the anti-tumor functions of the adaptive immune system. Still, the consequences of blocking the PD-L1/PD-1 axis on innate immune responses remain largely unexplored. In this context, neutrophils were shown to consist of distinct subpopulations, which possess either pro- or anti-tumor properties. PD-L1-expressing neutrophils are considered pro-tumor as they are able to suppress cytotoxic T cells and are propagated with disease progression. That said, we found that PD-L1 expression is not limited to tumor promoting neutrophils, but is also evident in anti-tumor neutrophils. We show that neutrophil cytotoxicity is effectively and efficiently blocked by tumor cell-expressed PD-1. Furthermore, the blocking of either neutrophil PD-L1 or tumor cell PD-1 maintains neutrophil cytotoxicity. Importantly, we show that tumor cell PD-1 blocks neutrophil cytotoxicity and promotes tumor growth via a mechanism independent of adaptive immunity. Taken together, these findings highlight the therapeutic potential of enhancing anti-tumor innate immune responses via blocking of the PD-L1/PD-1 axis.


2016 ◽  
Vol 75 (3) ◽  
pp. 74-84 ◽  
Author(s):  
A.E. Abaturov ◽  
◽  
E.A. Agafonova ◽  
N.I. Abaturova ◽  
V.L. Babich ◽  
...  

2020 ◽  
Vol 25 (46) ◽  
pp. 4893-4913 ◽  
Author(s):  
Fan Cao ◽  
Jie Liu ◽  
Bing-Xian Sha ◽  
Hai-Feng Pan

: Inflammatory bowel disease (IBD) is a chronic, elusive disorder resulting in relapsing inflammation of intestine with incompletely elucidated etiology, whose two representative forms are ulcerative colitis (UC) and Crohn’s disease (CD). Accumulating researches have revealed that the individual genetic susceptibility, environmental risk elements, intestinal microbial flora, as well as innate and adaptive immune system are implicated in the pathogenesis and development of IBD. Despite remarkable progression of IBD therapy has been achieved by chemical drugs and biological therapies such as aminosalicylates, corticosteroids, antibiotics, anti-tumor necrosis factor (TNF)-α, anti-integrin agents, etc., healing outcome still cannot be obtained, along with inevitable side effects. Consequently, a variety of researches have focused on exploring new therapies, and found that natural products (NPs) isolated from herbs or plants may serve as promising therapeutic agents for IBD through antiinflammatory, anti-oxidant, anti-fibrotic and anti-apoptotic effects, which implicates the modulation on nucleotide- binding domain (NOD) like receptor protein (NLRP) 3 inflammasome, gut microbiota, intestinal microvascular endothelial cells, intestinal epithelia, immune system, etc. In the present review, we will summarize the research development of IBD pathogenesis and current mainstream therapy, as well as the therapeutic potential and intrinsic mechanisms of NPs in IBD.


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 530
Author(s):  
Marlo K. Thompson ◽  
Robert W. Sobol ◽  
Aishwarya Prakash

The earliest methods of genome editing, such as zinc-finger nucleases (ZFN) and transcription activator-like effector nucleases (TALENs), utilize customizable DNA-binding motifs to target the genome at specific loci. While these approaches provided sequence-specific gene-editing capacity, the laborious process of designing and synthesizing recombinant nucleases to recognize a specific target sequence, combined with limited target choices and poor editing efficiency, ultimately minimized the broad utility of these systems. The discovery of clustered regularly interspaced short palindromic repeat sequences (CRISPR) in Escherichia coli dates to 1987, yet it was another 20 years before CRISPR and the CRISPR-associated (Cas) proteins were identified as part of the microbial adaptive immune system, by targeting phage DNA, to fight bacteriophage reinfection. By 2013, CRISPR/Cas9 systems had been engineered to allow gene editing in mammalian cells. The ease of design, low cytotoxicity, and increased efficiency have made CRISPR/Cas9 and its related systems the designer nucleases of choice for many. In this review, we discuss the various CRISPR systems and their broad utility in genome manipulation. We will explore how CRISPR-controlled modifications have advanced our understanding of the mechanisms of genome stability, using the modulation of DNA repair genes as examples.


Sign in / Sign up

Export Citation Format

Share Document