Natural Products: Experimental Efficient Agents for Inflammatory Bowel Disease Therapy

2020 ◽  
Vol 25 (46) ◽  
pp. 4893-4913 ◽  
Author(s):  
Fan Cao ◽  
Jie Liu ◽  
Bing-Xian Sha ◽  
Hai-Feng Pan

: Inflammatory bowel disease (IBD) is a chronic, elusive disorder resulting in relapsing inflammation of intestine with incompletely elucidated etiology, whose two representative forms are ulcerative colitis (UC) and Crohn’s disease (CD). Accumulating researches have revealed that the individual genetic susceptibility, environmental risk elements, intestinal microbial flora, as well as innate and adaptive immune system are implicated in the pathogenesis and development of IBD. Despite remarkable progression of IBD therapy has been achieved by chemical drugs and biological therapies such as aminosalicylates, corticosteroids, antibiotics, anti-tumor necrosis factor (TNF)-α, anti-integrin agents, etc., healing outcome still cannot be obtained, along with inevitable side effects. Consequently, a variety of researches have focused on exploring new therapies, and found that natural products (NPs) isolated from herbs or plants may serve as promising therapeutic agents for IBD through antiinflammatory, anti-oxidant, anti-fibrotic and anti-apoptotic effects, which implicates the modulation on nucleotide- binding domain (NOD) like receptor protein (NLRP) 3 inflammasome, gut microbiota, intestinal microvascular endothelial cells, intestinal epithelia, immune system, etc. In the present review, we will summarize the research development of IBD pathogenesis and current mainstream therapy, as well as the therapeutic potential and intrinsic mechanisms of NPs in IBD.

2017 ◽  
Vol 18 (10) ◽  
pp. 2020 ◽  
Author(s):  
Grainne Holleran ◽  
Loris Lopetuso ◽  
Valentina Petito ◽  
Cristina Graziani ◽  
Gianluca Ianiro ◽  
...  

2011 ◽  
Vol 300 (5) ◽  
pp. G716-G722 ◽  
Author(s):  
Silvio Danese

Inflammatory bowel disease (IBD) pathogenesis is driven by the interactions between the innate and the adaptive immune system. Both systems are actually expressed not only by immune cells, but also by essentially all types of nonimmune cells. Nonimmune cells have classically been considered as simple targets of the aberrant inflammatory process occurring in IBD. However, the discovery that many of the functions traditionally attributed to immune cells are also performed by nonimmune cells has caused a shift to a multidirectional hypothesis in which nonimmune cells and even acellular elements are considered active players of IBD pathogenesis. The aim of this review is to summarize the current role played by each cell type in IBD pathogenesis.


2019 ◽  
Vol 7 (10) ◽  
pp. 440 ◽  
Author(s):  
Bei Yue ◽  
Xiaoping Luo ◽  
Zhilun Yu ◽  
Sridhar Mani ◽  
Zhengtao Wang ◽  
...  

Host health depends on the intestinal homeostasis between the innate/adaptive immune system and the microbiome. Numerous studies suggest that gut microbiota are constantly monitored by the host mucosal immune system, and any slight disturbance in the microbial communities may contribute to intestinal immune disruption and increased susceptibility to inflammatory bowel disease (IBD), a chronic relapsing inflammatory condition of the gastrointestinal tract. Therefore, maintaining intestinal immune homeostasis between microbiota composition and the mucosal immune system is an effective approach to prevent and control IBD. The overall theme of this review is to summarize the research concerning the pathogenesis of IBD, with particular focus on the factors of gut microbiota-mucosal immune interactions in IBD. This is a comprehensive and in-depth report of the crosstalk between gut microbiota and the mucosal immune system in IBD pathogenesis, which may provide insight into the further evaluation of the therapeutic strategies for IBD.


2005 ◽  
Vol 288 (2) ◽  
pp. G169-G174 ◽  
Author(s):  
Gert Van Assche ◽  
Paul Rutgeerts

Adhesion molecules regulate the influx of leukocytes in normal and inflamed gut. They are also involved in local lymphocyte stimulation and antigen presentation within the intestinal mucosa. In intestinal inflammation, many adhesion molecules are upregulated, but α4-integrins most likely hold a key position in directing leukocytes into the inflamed bowel wall. Therapeutic compounds directed against trafficking of leukocytes have been designed and are being developed as a novel class of drugs in the treatment of Crohn's disease and ulcerative colitis. This review deals with the immunological aspects of leukocyte trafficking focused on gut homing of T cells. Second, the changes in adhesion molecules and T cell trafficking during intestinal inflammation are discussed. Finally, we review the clinical data that have been gathered with respect to the therapeutic potential and the safety of antiadhesion molecule treatment. Antegren, or natalizumab, a humanized anti-α4 integrin IgG4 antibody, has been most extensively evaluated and may be close to registration. A more specific humanized α4β7-integrin MLN-02 has shown preliminary clinical efficacy in ulcerative colitis, and both antergren and MLN-02 appear to be very safe. Trials with the anti-ICAM-1 antisense oligonucleotide ISIS-2302 in steroid refractory Crohn's disease have provided conflicting efficacy data. In the near future, some of these novel biological agents may prove valuable therapeutic tools in the management of refractory inflammatory bowel disease, although it is too early to define the patient population that will benefit most from these agents.


mBio ◽  
2021 ◽  
Author(s):  
Nathaniel D. Chu ◽  
Jessica W. Crothers ◽  
Le T. T. Nguyen ◽  
Sean M. Kearney ◽  
Mark B. Smith ◽  
...  

Fecal microbiota transplantation (FMT)—transferring fecal microbes from a healthy donor to a sick patient—has shown promise for gut diseases such as inflammatory bowel disease. However, unlike pharmaceuticals, fecal transplants are complex mixtures of living organisms, which must then interact with the microbes and immune system of the recipient.


2020 ◽  
Vol 9 (5) ◽  
pp. 1273 ◽  
Author(s):  
Karma Yeshi ◽  
Roland Ruscher ◽  
Luke Hunter ◽  
Norelle L. Daly ◽  
Alex Loukas ◽  
...  

Inflammatory bowel disease (IBD) is a chronic and life-long disease characterized by gastrointestinal tract inflammation. It is caused by the interplay of the host’s genetic predisposition and immune responses, and various environmental factors. Despite many treatment options, there is no cure for IBD. The increasing incidence and prevalence of IBD and lack of effective long-term treatment options have resulted in a substantial economic burden to the healthcare system worldwide. Biologics targeting inflammatory cytokines initiated a shift from symptomatic control towards objective treatment goals such as mucosal healing. There are seven monoclonal antibody therapies excluding their biosimilars approved by the US Food and Drug Administration for induction and maintenance of clinical remission in IBD. Adverse side effects associated with almost all currently available drugs, especially biologics, is the main challenge in IBD management. Natural products have significant potential as therapeutic agents with an increasing role in health care. Given that natural products display great structural diversity and are relatively easy to modify chemically, they represent ideal scaffolds upon which to generate novel therapeutics. This review focuses on the pathology, currently available treatment options for IBD and associated challenges, and the roles played by natural products in health care. It discusses these natural products within the current biodiscovery research agenda, including the applications of drug discovery techniques and the search for next-generation drugs to treat a plethora of inflammatory diseases, with a major focus on IBD.


2019 ◽  
Vol 25 (5) ◽  
pp. 811-815 ◽  
Author(s):  
Mariana X Byndloss ◽  
Yael Litvak ◽  
Andreas J Bäumler

An imbalance in our microbiota may contribute to many human diseases, but the mechanistic underpinnings of dysbiosis remain poorly understood. We argue that dysbiosis is secondary to a defect in microbiota-nourishing immunity, a part of our immune system that balances the microbiota to attain colonization resistance against environmental exposure to microorganisms. We discuss this new hypothesis and its implications for ulcerative colitis, an inflammatory bowel disease of the large intestine.


Sign in / Sign up

Export Citation Format

Share Document