Printed air cathode for flexible and high energy density zinc-air battery

MRS Advances ◽  
2016 ◽  
Vol 1 (53) ◽  
pp. 3585-3591
Author(s):  
Soorathep Kheawhom ◽  
Sira Suren

ABSTRACTFlexible zinc-air batteries were fabricated using an inexpensive screen-printing technique. The anode and cathode current collectors were printed using commercial nano-silver conductive ink on a polyethylene terephthalate (PET) substrate and a polypropylene (PP) membrane, respectively. Air cathodes made of blended carbon black with inexpensive metal oxides including manganese oxide (MnO2) and cerium oxide (CeO2), were studied. The presence of the metal oxides in the air cathodes enhanced the oxygen reduction reaction which is the most important cathodic reaction in zinc-air batteries. The battery with 20 %wt CeO2showed the highest performance and provided an open-circuit voltage of 1.6 V and 5 – 240 mA.cm-2ohmic loss zone. The discharge potential of this battery at the current density of 5 mA.cm-2was nearly 0.25 V higher than that of the battery without metal oxides. Finally, the battery was tested for its flexibility by bending it so that its length decreased from 2.5 to 1 cm. The results showed that the bending did not affect characteristics on potential voltage and discharging time of the batteries fabricated.

Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1402 ◽  
Author(s):  
Weimin Zhang ◽  
Yuqing Liu ◽  
Lipeng Zhang ◽  
Jun Chen

Recently, zinc–air batteries (ZABs) have been receiving attention due to their theoretically high energy density, excellent safety, and the abundance of zinc resources. Typically, the performance of the zinc air batteries is determined by two catalytic reactions on the cathode—the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Therefore, intensive effort has been devoted to explore high performance electrocatalysts with desired morphology, size, and composition. Among them, single-atom catalysts (SACs) have emerged as attractive and unique systems because of their high electrocatalytic activity, good durability, and 100% active atom utilization. In this review, we mainly focus on the advance application of SACs in zinc air batteries in recent years. Firstly, SACs are briefly compared with catalysts in other scales (i.e., micro- and nano-materials). A main emphasis is then focused on synthesis and electrocatalytic activity as well as the underlying mechanisms for mono- and dual-metal-based SACs in zinc air batteries catalysis. Finally, a prospect is provided that is expected to guide the rational design and synthesis of SACs for zinc air batteries.


2021 ◽  
Author(s):  
yajun JI ◽  
Fei Chen ◽  
Shufen Tan ◽  
Fuyong Ren

Abstract Transition metal oxides are generally designed as hybrid nanostructures with high performance for supercapacitors by enjoying the advantages of various electroactive materials. In this paper, a convenient and efficient route had been proposed to prepare hierarchical coral-like MnCo2O4.5@Co-Ni LDH composites on Ni foam, in which MnCo2O4.5 nanowires were enlaced with ultrathin Co-Ni layered double hydroxides nanosheets to achieve high capacity electrodes for supercapacitors. Due to the synergistic effect of shell Co-Ni LDH and core MnCo2O4.5, the outstanding electrochemical performance in three-electrode configuration was triggered (high area capacitance of 5.08 F/cm2 at 3 mA/cm2 and excellent rate capability of maintaining 61.69 % at 20 mA/cm2), which is superior to those of MnCo2O4.5, Co-Ni LDH and other metal oxides based composites reported. Meanwhile, the as-prepared hierarchical MnCo2O4.5@Co-Ni LDH electrode delivered improved electrical conductivity than that of pristine MnCo2O4.5. Furthermore, the as-constructed asymmetric supercapacitor using MnCo2O4.5@Co-Ni LDH as positive and activated carbon as negative electrode presented a rather high energy density of 220 μWh/cm2 at 2400 μW/cm2 and extraordinary cycling durability with the 100.0 % capacitance retention over 8000 cycles at 20 mA/cm2, demonstrating the best electrochemical performance compared to other asymmetric supercapacitors using metal oxides based composites as positive electrode material. It can be expected that the obtained MnCo2O4.5@Co-Ni LDH could be used as the high performance and cost-effective electrode in supercapacitors.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Hiroki Takagi ◽  
Koichi Kakimoto ◽  
Daisuke Mori ◽  
Sou Taminato ◽  
Yasuo Takeda ◽  
...  

The demand for high energy density rechargeable batteries beyond lithium-ion batteries has increased for electric vehicles. In the present study, a novel high energy density rechargeable aqueous lithium battery was proposed. The battery was composed of a lithium metal anode, a lithium-stable non-aqueous electrolyte, a water-stable lithium-ion conducting solid electrolyte of Li1.4Al0.4Ge0.2Ti1.4(PO4)3-epoxy-TiO2 separator, and a hydroquinone sulfonic acid (HQS)/benzoquinone sulfonic acid (BQS) redox couple in an aqueous acetic acid solution (HAc). An open-circuit voltage of 3.7 V at 25 °C was recorded, and the theoretical energy density of the battery based on the reaction 2Li + BQS + 2H2O = 2 LiOH + HQS was 833 Whkg-1, about two times higher than that of the lithium-ion battery. The battery was successfully cycled at 0.5 mA cm-2 and 25 °C with low polarization.


2019 ◽  
Vol 10 ◽  
pp. 1923-1932 ◽  
Author(s):  
Shengming Zhang ◽  
Xuhui Wang ◽  
Yan Li ◽  
Xuemei Mu ◽  
Yaxiong Zhang ◽  
...  

We have successfully prepared iron oxide and nickel oxide on carbon nanotubes on carbon cloth for the use in supercapacitors via a simple aqueous reduction method. The obtained carbon cloth–carbon nanotube@metal oxide (CC-CNT@MO) three-dimensional structures combine the high specific capacitance and rich redox sites of metal oxides with the large specific area and high electrical conductivity of carbon nanotubes. The prepared CC-CNT@Fe2O3 anode reaches a high capacity of 226 mAh·g−1 at 2 A·g−1 with a capacitance retention of 40% at 40 A·g−1. The obtained CC-CNT@NiO cathode exhibits a high capacity of 527 mAh·g−1 at 2 A·g−1 and an excellent rate capability with a capacitance retention of 78% even at 40 A·g−1. The all-solid-state asymmetric supercapacitor fabricated with these two electrodes delivers a high energy density of 63.3 Wh·kg−1 at 1.6 kW·kg−1 and retains 83% of its initial capacitance after 5000 cycles. These results demonstrate that our simple aqueous reduction method to combine CNT and metal oxides reveals an exciting future in constructing high-performance supercapacitors.


Science ◽  
2020 ◽  
Vol 371 (6524) ◽  
pp. 46-51
Author(s):  
Wei Sun ◽  
Fei Wang ◽  
Bao Zhang ◽  
Mengyi Zhang ◽  
Verena Küpers ◽  
...  

Rechargeable alkaline zinc-air batteries promise high energy density and safety but suffer from the sluggish 4 electron (e−)/oxygen (O2) chemistry that requires participation of water and from the electrochemical irreversibility originating from parasitic reactions caused by caustic electrolytes and atmospheric carbon dioxide. Here, we report a zinc-O2/zinc peroxide (ZnO2) chemistry that proceeds through a 2e−/O2 process in nonalkaline aqueous electrolytes, which enables highly reversible redox reactions in zinc-air batteries. This ZnO2 chemistry was made possible by a water-poor and zinc ion (Zn2+)–rich inner Helmholtz layer on the air cathode caused by the hydrophobic trifluoromethanesulfonate anions. The nonalkaline zinc-air battery thus constructed not only tolerates stable operations in ambient air but also exhibits substantially better reversibility than its alkaline counterpart.


2013 ◽  
Vol 744 ◽  
pp. 403-406
Author(s):  
Jia Chun Lu ◽  
Zhi Chao Liu ◽  
Ping Huang ◽  
Quan Fang ◽  
Min Hua Zhu

Li/graphite fluoride (GF) cells are well known to have high energy density, good reliability, long shelf life, safety and wide operating temperature. However, the low electronic conductivity and discharge potential of Li/GF cells obviously limited its applications. In order to improve the energy performance of Li/GF cells, an efficient method is to increase the transportation ability of Li+in cathode. The decreasing layers of graphite could increase the fluorinated surface between carbon and fluorinating agent, resulting in the emerge of the C-F bands of fluoride. Multi-walled carbon nanotube (MWCNT) can be considered as a curly materials of nature graphite sheets. This barrel structure shows much more C-F bands when they were fluorinated and turned into fluorinated MWCNT. And these emerged C-F bands are advantageous when they react with lithium ion during discharge. The results show that Li/FMWCNT cells possess higher discharge potential than Li/GF cells.


2021 ◽  
Author(s):  
Xingwei Sun ◽  
Haiou Liang ◽  
Haiyan Yu ◽  
Jie Bai ◽  
chunping Li

Abstract Developing highly efficient and non-precious materials for Zn-air batteries (ZABs) and supercapacitors (SCs) are still crucial and challenging. Herein, electronic reconfiguration and introducing conductive carbon-based materials are simultaneously conducted to enhance the ZABs and SCs performance of Co2P. We develop a simple and efficient electrospinning technology followed by carbonization process to synthesize embedding Co2P nanoparticles in Cu doping carbon nanofibers (Cu-Co2P/CNFs). As a result, the 7% Cu-Co2P/CNFs presents high oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity. (half-wave potential of 0.792 V for ORR, overpotential of 360 mV at 10 mA cm-2 for OER). ZABs that employed 7% Cu-Co2P/CNFs and acetylene black at a mass ratio of 1:2 as the cathode electrocatalyst exhibit a power density of 230 mW cm-2 and excellent discharge-charge reversibility of 80 h. In addition, the 7% Cu-Co2P/CNFs show the specific capacitance of 558 F g-1 at 1 A g-1. Moreover, the asymmetric supercapacitor (ASC) is assembled applying 7% Cu-Co2P/CNFs electrode and pure CNFs, which exhibits a high energy density (25.9 Wh kg-1), exceptional power density (217.5 kW kg-1) and excellent cycle stability (96.6% retention after 10,000 cycles). This work may provide an effective way to prepared Co2P based materials for ZABs and SCs applications.


2020 ◽  
Vol 13 (2) ◽  
pp. 345-373 ◽  
Author(s):  
R. J. Clément ◽  
Z. Lun ◽  
G. Ceder

Cation-disordered rocksalt oxides and oxyfluorides are promising high energy density lithium-ion cathodes, yet require a detailed understanding of the impact of disorder and short-range order on the structural and electrochemical properties.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 462 ◽  
Author(s):  
Laksanaporn Poolnapol ◽  
Wathanyu Kao-ian ◽  
Anongnat Somwangthanaroj ◽  
Falko Mahlendorf ◽  
Mai Thanh Nguyen ◽  
...  

Due to their low cost and very high energy density, zinc–air batteries (ZABs) exhibit high potential for various energy applications. The electrochemical performance of the air-cathode has a decisive impact on the discharge performance of ZABs because the sluggish oxygen reduction reaction (ORR) kinetics increase the overpotential of the air-cathode and hence the performance of ZABs. In this work, reduced graphene oxide decorated with silver nanoparticles (AgNP/rGO) is synthesized using simultaneous reduction of graphene oxide and silver ions. Different amounts of silver loading are examined for the synthesis of AgNP/rGO. The synthesized AgNP/rGO samples are analyzed using a rotating disk electrode in order to investigate ORR activity. Then, the synthesized AgNP/rGO electrocatalyst is applied on a tubular designed zinc–air battery in order to study the performance of the zinc–air battery. Results demonstrate that AgNP/rGO is an efficient and cost-effective ORR electrocatalyst for its practical application in ZABs.


Sign in / Sign up

Export Citation Format

Share Document