Upconversion Nanoparticles Y2O3 and Gd2O3 Co-Doped with Er3+ and Yb3+ with Aminosilane-Folic Acid Functionalization for Breast and Cervix Cancer Cells Detection

MRS Advances ◽  
2017 ◽  
Vol 2 (52) ◽  
pp. 2983-2988 ◽  
Author(s):  
D. Chávez-García ◽  
K. Juárez-Moreno ◽  
G.A. Hirata

ABSTRACTThe upconversion nanoparticles (UCNPs) possess the ability to absorb near infrared energy (980 nm) and upconvert it to emit in the visible spectra. In this research, the UNCPs emit in red (660 nm) due to the electronic transitions between two rare earth ions: Er3+ and Yb3+, this process is called energy transfer upconversion (ETU). The UCNPs were functionalized with aminosilanes and folic acid receptors (UCNP-FR) and analyzed by transmission electron microscopy, Fourier transform infrared spectroscopy and luminescence measurements. UCNPs-FR of Y2O3 have a particle size of 70 ± 10 nm and the Gd2O3 have a 50 ± 10 nm particle size. Both showed a good luminescence spectrum in comparison with the bare ones. Cytotoxicity of different amounts between 0.001 µg/ml to 1 µg/ml of bare and functionalized UCNPs was measured with the colorimetric assay MTT in three cancer cell lines: human cervical adenocarcinoma (HeLa), human breast cancer cells MB-MDA-231. Some concentrations of bare UCNPs were cytotoxic for cancer cells; however after their functionalization they resulted to be non-cytotoxic. The functionalized UCNPs were able to bind to folate receptors which are overexpressed in cervical and breast cancers cells. It was demonstrated by confocal microscopy, that the functionalized UCNPs were internalized into the cancer cells, confirming that they can be used as biolabels for breast and cervical cancer cells.

10.5772/62252 ◽  
2016 ◽  
Vol 3 ◽  
pp. 1 ◽  
Author(s):  
Dalia Holanda Chavez ◽  
Karla Juarez-Moreno ◽  
Gustavo Alonso Hirata

In this study, luminescent upconversion nanoparticles (UCNPs) Y2O3 and Gd2O3 co-doped with Yb3+ and Er3+ were prepared by the sol-gel method (SG). These NPs are able to absorb near infrared photons and upconvert them into visible radiation with a direct application in bioimaging, as an important tool to diagnose and visualize cancer cells. The UCNPs were coated with a thin silica shell and functionalized with amino groups for further folic acid conjugation to allow their interaction with folate ligands on the cell surface. Their physical properties were analysed by Transmission Electron Microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and photoluminescence (PL) measurements. The PL results revealed excellent luminescence properties on all core-shell UCNPs. Cytotoxicity experiments with concentrations of bare and aminosilane coated/functionalized UCNPs between 0.001 μg/mL to 1 μg/mL were tested on two different cell lines from human cervix carcinoma (HeLa) and human colorectal adenocarcinoma (DLD-1) with a colorimetric assay based on the reduction of MTT reagent (methy-134-thiazolyltetrazolium). The assays show that some concentrations of bare UCNPs were cytotoxic for cervical adenocarcinoma cells (HeLa); however, for human colorectal adenocarcinoma all UCNPs are non-cytotoxic. After UCNPs functionalization with silica-aminosilane (APTES/TEOS), all of the nanoparticles tested were found to be non-cytotoxic for both cell lines. The UCNPs functionalized in this work can be further conjugated with specific ligands and used as biolabels for detection of cancer cells.


RSC Advances ◽  
2015 ◽  
Vol 5 (1) ◽  
pp. 20-26 ◽  
Author(s):  
Hao Cheng ◽  
Chuanxi Wang ◽  
Zhenzhu Xu ◽  
Huihui Lin ◽  
Chi Zhang

Folic acid-conjugated nanocomposites with NIR fluorescence, water-solubility, and low toxicity are prepared and used as target-imaging agents for cancer cells.


2018 ◽  
Vol 53 (9) ◽  
pp. 6665-6680 ◽  
Author(s):  
D. Chávez-García ◽  
K. Juarez-Moreno ◽  
C. H. Campos ◽  
E. M. Tejeda ◽  
J. B. Alderete ◽  
...  

2019 ◽  
Vol 20 (9) ◽  
pp. 2156 ◽  
Author(s):  
Akhtar ◽  
Ghali ◽  
Wang ◽  
Bell ◽  
Li ◽  
...  

High-risk human papilloma virus (HPV) infection is directly associated with cervical cancer development. Arsenic trioxide (ATO), despite inducing apoptosis in HPV-infected cervical cancer cells in vitro, has been compromised by toxicity and poor pharmacokinetics in clinical trials. Therefore, to improve ATO’s therapeutic profile for HPV-related cancers, this study aims to explore the effects of length of ligand spacers of folate-targeted liposomes on the efficiency of ATO delivery to HPV-infected cells. Fluorescent ATO encapsulated liposomes with folic acid (FA) conjugated to two different PEG lengths (2000 Da and 5000 Da) were synthesised, and their cellular uptake was examined for HPV-positive HeLa and KB and HPV-negative HT-3 cells using confocal microscopy, flow cytometry, and spectrophotometer readings. Cellular arsenic quantification and anti-tumour efficacy was evaluated through inductively coupled plasma-mass spectrometry (ICP-MS) and cytotoxicity studies, respectively. Results showed that liposomes with a longer folic acid-polyethylene glycol (FA-PEG) spacer (5000 Da) displayed a higher efficiency in targeting folate receptor (FR) + HPV-infected cells without increasing any inherent cytotoxicity. Targeted liposomally delivered ATO also displayed superior selectivity and efficiency in inducing higher cell apoptosis in HPV-positive cells per unit of arsenic taken up than free ATO, in contrast to HT-3. These findings may hold promise in improving the management of HPV-associated cancers.


Biomolecules ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 820 ◽  
Author(s):  
Dmitry Polikarpov ◽  
Liuen Liang ◽  
Andrew Care ◽  
Anwar Sunna ◽  
Douglas Campbell ◽  
...  

Bladder cancer is the ninth most common cancer worldwide. Due to a high risk of recurrence and progression of bladder cancer, every patient needs long-term surveillance, which includes regular cystoscopy, sometimes followed by a biopsy of suspicious lesions or resections of recurring tumours. This study addresses the development of novel biohybrid nanocomplexes representing upconversion nanoparticles (UCNP) coupled to antibodies for photoluminescent (PL) detection of bladder cancer cells. Carrying specific antibodies, these nanoconjugates selectively bind to urothelial carcinoma cells and make them visible by emitting visible PL upon excitation with deeply penetrating near-infrared light. UCNP were coated with a silica layer and linked to anti-Glypican-1 antibody MIL38 via silica-specific solid-binding peptide. Conjugates have been shown to specifically attach to urothelial carcinoma cells with high expression of Glypican-1. This result highlights the potential of produced conjugates and conjugation technology for further studies of their application in the tumour detection and fluorescence-guided resection.


2020 ◽  
Vol 10 (9) ◽  
pp. 1567-1572
Author(s):  
Yurong Liu ◽  
Xiaoyan Hou ◽  
Lianwei Lu ◽  
Ruixiang Wang

This study examined the effect of nanosized ferric oxide (Fe3O4) particles coated with different materials on the toxicity to HeLa cervical cancer cells. Magnetic Fe3O4 nanoparticles were prepared using a solventless thermal decomposition method and coated with either PLGA or CA-PLGA star copolymers. The uptake of nanoparticles by HeLa cells was observed by laser confocal microscopy. The toxicity to HeLa cells of Fe3O4 nanoparticles coated with these two materials was determined by the thiazole blue (MTT) method. The particle size of the single Fe3O4 nanoparticles was about 7 nm, and the PLGA and CA-PLGA nanoparticles loaded with Fe3O4 were spherical, with a particle size of about 200 mm and a theoretical drug loading of 10%. When the mass concentration of Fe3O4 nanoparticles is the same (25 pg/mL), the toxicity of Fe3O4-loaded CA-PLGA nanoparticles to HeLa cells is less than that of the corresponding PLGA nanoparticles. Thus, the CA-PLGA star copolymer can reduce the cytotoxicity of magnetic Fe3O4 nanoparticles and offers potential for broad application in vivo.


Nanophotonics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 2425-2435 ◽  
Author(s):  
Jing Wang ◽  
Dong Liang ◽  
Zehua Qu ◽  
Ivan M. Kislyakov ◽  
Valery M. Kiselev ◽  
...  

AbstractBiological systems have high transparence to 700–1100-nm near-infrared (NIR) light. Black phosphorus quantum dots (BPQDs) have high optical absorbance in this spectrum. This optical property of BPQDs integrates both diagnostic and therapeutic functions together in an all-in-one processing system in cancer theranostic approaches. In the present study, BPQDs were synthesized and functionalized by targeting moieties (PEG-NH2-FA) and were further loaded with anticancer drugs (doxorubicin) for photodynamic–photothermal–chemotherapy. The precise killing of cancer cells was achieved by linking BPQDs with folate moiety (folic acid), internalizing BPQDs inside cancer cells with folate receptors and NIR triggering, without affecting the receptor-free cells. These in vitro experiments confirm that the agent exhibited an efficient photokilling effect and a light-triggered and heat-induced drug delivery at the precise tumor sites. Furthermore, the nanoplatform has good biocompatibility and effectively obliterates tumors in nude mice, showing no noticeable damages to noncancer tissues. Importantly, this nanoplatform can inhibit tumor growth through visualized synergistic treatment and photoacoustic and photothermal imaging. The present design of versatile nanoplatforms can allow for the adjustment of nanoplatforms for good treatment efficacy and multiplexed imaging, providing an innovation for targeted tumor treatment.


Sign in / Sign up

Export Citation Format

Share Document