Cytotoxicity to cervical cancer cells of Fe3O4 magnetic nanoparticles coated with cholic acid

2020 ◽  
Vol 10 (9) ◽  
pp. 1567-1572
Author(s):  
Yurong Liu ◽  
Xiaoyan Hou ◽  
Lianwei Lu ◽  
Ruixiang Wang

This study examined the effect of nanosized ferric oxide (Fe3O4) particles coated with different materials on the toxicity to HeLa cervical cancer cells. Magnetic Fe3O4 nanoparticles were prepared using a solventless thermal decomposition method and coated with either PLGA or CA-PLGA star copolymers. The uptake of nanoparticles by HeLa cells was observed by laser confocal microscopy. The toxicity to HeLa cells of Fe3O4 nanoparticles coated with these two materials was determined by the thiazole blue (MTT) method. The particle size of the single Fe3O4 nanoparticles was about 7 nm, and the PLGA and CA-PLGA nanoparticles loaded with Fe3O4 were spherical, with a particle size of about 200 mm and a theoretical drug loading of 10%. When the mass concentration of Fe3O4 nanoparticles is the same (25 pg/mL), the toxicity of Fe3O4-loaded CA-PLGA nanoparticles to HeLa cells is less than that of the corresponding PLGA nanoparticles. Thus, the CA-PLGA star copolymer can reduce the cytotoxicity of magnetic Fe3O4 nanoparticles and offers potential for broad application in vivo.

2020 ◽  
Author(s):  
Xiaofei Jiang ◽  
Mingqing Shi ◽  
Miao Sui ◽  
Yizhen Yuan ◽  
Shuang Zhang ◽  
...  

Abstract Background: Cervical cancer continues to be the leading cause of cancer deaths among women worldwide. Oleanolic acid (OA) is a naturally occurring substance found in the leaves, fruits, and rhizomes of plants that has anti-cancer activity. Methods: We used tumor-bearing mice as the animal model and Hela cell as cell models. Western blot was used for detecting the expression of proteins in ferroptosis related proteins acyl-CoA synthase long-chain family member 4 (ACSL4), ferritin heavy chain (FTH1), transferrin receptor (TfR1) and glutathione peroxidase 4 (GPX4) in vivo and in vitro. MTT and EdU was for the detection of the viability of Hela cells. Results: In vivo experiments showed that OA significantly reduced the size and mass of cervical cancer tumors. In vitro experiments showed that OA significantly reduced the viability and proliferation capacity of Hela cells. In both in vivo and in vitro assays, OA increased the level of oxidative stress and Fe2+ content, and increased the expression of ferroptosis related proteins. We found high expression of ACSL4 in both xenograft models and cervical carcinoma cells. Meanwhile, knockdown of ACSL4 expression using shRNA in cervical cancer cells significantly increased cell viability and proliferation. In addition, decreased ROS levels and GPX4 were detected in ACSL4 knockdown cervical cancer cells, suggesting that ACSL4 inhibition may contribute to the reduction of ferroptosis within Hela cells and thus improve Hela cell survival. Conclusion: Promotion of ACSL4 dependent ferroptosis through OA may be an effective approach to treat cervical cancer.


2019 ◽  
Vol 2019 ◽  
pp. 1-18
Author(s):  
Qian-Yu Liu ◽  
Feng Ruan ◽  
Jing-Yuan Li ◽  
Li Wei ◽  
Ping Hu ◽  
...  

Human menstrual blood-derived stem cells (hMBSCs) are a novel type of mesenchymal stem cells (MSCs) that have a high proliferative rate, multilineage differentiation potential, low immunogenicity, and low oncogenicity, making them suitable candidates for regenerative medicine. The therapeutic efficacy of hMBSCs has been demonstrated in some diseases; however, their effects on cervical cancer remain unclear. In the present study, we investigated whether hMBSCs have anticancer properties on cervical cancer cells in vivo and in vitro, which has not yet been reported. In vitro, transwell coculturing experiments revealed that hMBSCs suppress the proliferation and invasion of HeLa cervical cancer cells by inducing G0/G1 cell cycle arrest. In vivo, we established a xenografted BALB/c nude mouse model by subcutaneously coinjecting HeLa cells with hMBSCs for 21 days. We found that hMBSCs significantly decrease the average volume and average weight of xenografted tumors. ELISA, TGF-β1 antibody, and recombinant human TGF-β1 (rhTGF-β1) were used to analyze whether TGF-β1 contributed to cell cycle arrest. We found that hMBSC-secreted TGF-β1 and rhTGF-β1 induced cell cycle arrest and increased the expression of phospho-JNK and phospho-P21 in HeLa cells, which was mostly reversed by TGF-β1 antibody. These results indicate that hMBSCs have antitumor properties on cervical cancer in vitro and in vivo, mediated by the TGF-β1/JNK/p21 signaling pathway. In conclusion, this study suggests that hMBSC-based therapy is promising for the treatment of cervical cancer.


2020 ◽  
Vol 20 (17) ◽  
pp. 2125-2135
Author(s):  
Ci Ren ◽  
Chun Gao ◽  
Xiaomin Li ◽  
Jinfeng Xiong ◽  
Hui Shen ◽  
...  

Background: Persistent infection with the high-risk of human papillomavirus (HR-HPVs) is the primary etiological factor of cervical cancer; HR-HPVs express oncoproteins E6 and E7, both of which play key roles in the progression of cervical carcinogenesis. Zinc Finger Nucleases (ZFNs) targeting HPV E7 induce specific shear of the E7 gene, weakening the malignant biological effects, hence showing great potential for clinical transformation. Objective: Our aim was to develop a new comprehensive therapy for better clinical application of ZFNs. We here explored the anti-cancer efficiency of HPV targeted ZFNs combined with a platinum-based antineoplastic drug Cisplatin (DDP) and an HDAC inhibitor Trichostatin A (TSA). Methods: SiHa and HeLa cells were exposed to different concentrations of DDP and TSA; the appropriate concentrations for the following experiments were screened according to cell apoptosis. Then cells were grouped for combined or separate treatments; apoptosis, cell viability and proliferation ability were measured by flow cytometry detection, CCK-8 assays and colony formation assays. The xenograft experiments were also performed to determine the anti-cancer effects of the combined therapy. In addition, the HPV E7 and RB1 expressions were measured by western blot analysis. Results: Results showed that the combined therapy induced about two times more apoptosis than that of ZFNs alone in SiHa and HeLa cells, and much more inhibition of cell viability than either of the separate treatment. The colony formation ability was inhibited more than 80% by the co-treatment, the protein expression of HPV16/18E7 was down regulated and that of RB1 was elevated. In addition, the xenografts experiment showed a synergistic effect between DDP and TSA together with ZFNs. Conclusion: Our results demonstrated that ZFNs combined with DDP or TSA functioned effectively in cervical cancer cells, and it provided novel ideas for the prevention and treatment of HPV-related cervical malignancies.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Huilin Zhang ◽  
Ping He ◽  
Qing Zhou ◽  
Yan Lu ◽  
Bingjian Lu

Abstract Background CSN5, a member of Cop9 signalosome, is essential for protein neddylation. It has been supposed to serve as an oncogene in some cancers. However, the role of CSN5 has not been investigated in cervical cancer yet. Methods Data from TCGA cohorts and GEO dataset was analyzed to examine the expression profile of CSN5 and clinical relevance in cervical cancers. The role of CSN5 on cervical cancer cell proliferation was investigated in cervical cancer cell lines, Siha and Hela, through CSN5 knockdown via CRISPR–CAS9. Western blot was used to detect the effect of CSN5 knockdown and overexpression. The biological behaviors were analyzed by CCK8, clone formation assay, 3-D spheroid generation assay and cell cycle assay. Besides, the role CSN5 knockdown in vivo was evaluated by xenograft tumor model. MLN4924 was given in Siha and Hela with CSN5 overexpression. Results We found that downregulation of CSN5 in Siha and Hela cells inhibited cell proliferation in vitro and in vivo, and the inhibitory effects were largely rescued by CSN5 overexpression. Moreover, deletion of CSN5 caused cell cycle arrest rather than inducing apoptosis. Importantly, CSN5 overexpression confers resistance to the anti-cancer effects of MLN4924 (pevonedistat) in cervical cancer cells. Conclusions Our findings demonstrated that CSN5 functions as an oncogene in cervical cancers and may serve as a potential indicator for predicting the effects of MLN4924 treatment in the future.


2017 ◽  
Vol 27 (7) ◽  
pp. 1306-1317
Author(s):  
Yen-Yun Wang ◽  
Pei-Wen Hsieh ◽  
Yuk-Kwan Chen ◽  
Stephen Chu-Sung Hu ◽  
Ya-Ling Hsu ◽  
...  

ObjectiveThe β-nitrostyrene family has been reported to possess anticancer properties. However, the anticancer activity of β-nitrostyrenes on cervical cancer cells and the underlying mechanisms involved remain unexplored. In this study, a β-nitrostyrene derivative CYT-Rx20 (3′-hydroxy-4′-methoxy-β-methyl-β-nitrostyrene) was synthesized, and its anticancer activity on cervical cancer cells and the mechanisms involved were investigated.MethodsThe effect of CYT-Rx20 on human cervical cancer cell growth was evaluated using cell viability assay. Reactive oxygen species (ROS) generation and annexin V staining were detected by flow cytometry. The protein expression levels of cleaved caspase-3, cleaved caspase-9, cleaved poly (ADPribose) polymerase, γH2AX, β-catenin, Vimentin, and Twist were measured by Western blotting. DNA double-strand breaks were determined by γ-H2AX foci formation and neutral comet assay. Migration assay was used to determine cancer cell migration. Nude mice xenograft was used to investigate the antitumor effects of CYT-Rx20 in vivo.ResultsCYT-Rx20 induced cytotoxicity in cervical cancer cells by promoting cell apoptosis via ROS generation and DNA damage. CYT-Rx20-induced cell apoptosis, ROS generation, and DNA damage were reversed by thiol antioxidants. In addition, CYT-Rx20 inhibited cervical cancer cell migration by regulating the expression of epithelial-to-mesenchymal transition markers. In nude mice, CYT-Rx20 inhibited cervical tumor growth accompanied by increased expression of DNA damage marker γH2AX and decreased expression of mesenchymal markers β-catenin and Twist.ConclusionsCYT-Rx20 inhibits cervical cancer cells in vitro and in vivo and has the potential to be further developed into an anti-cervical cancer drug clinically.


Author(s):  
Xiaoling Wu ◽  
Zhiqin Yang ◽  
Huimin Dang ◽  
Huixia Peng ◽  
Zhijun Dai

Baicalein, a flavonoid derived from the root of Scutellaria baicalensis, has been reported to possess multiple pharmacological activities, such as anticancer and anti-inflammatory properties. This study investigated the effect of baicalein in cervical cancer cells. Cell growth curve and MTT assay were performed and revealed that baicalein inhibited the proliferation of SiHa and HeLa cells in a dose-dependent manner. We further found that baicalein arrested the cell cycle of SiHa and HeLa cells at the G0/G1 phase by suppressing the expression of cyclin D1 through the downregulation of phosphorylated protein kinase B (p-AKT) and phosphorylated glycogen synthase kinase 3β (p-GSK3β) according to FACS assays and Western blotting. Moreover, when CHIR-99021, a GSK3β inhibitor, was added to baicalein-treated SiHa cells, the expression of cyclin D1 was recovered, and cell proliferation was promoted. In conclusion, these data indicated that baicalein suspended the cell cycle at the G0/G1 phase via the downregulation of cyclin D1 through the AKT‐GSK3β signaling pathway and further inhibited the proliferation of SiHa and HeLa cervical cancer cells.


2020 ◽  
Vol 10 ◽  
Author(s):  
Nan Cui ◽  
Lu Li ◽  
Qian Feng ◽  
Hong-mei Ma ◽  
Dan Lei ◽  
...  

Hexokinase 2 (HK2) is a member of the hexokinases (HK) that has been reported to be a key regulator during glucose metabolism linked to malignant growth in many types of cancers. In this study, stimulation of HK2 expression was observed in squamous cervical cancer (SCC) tissues, and HK2 expression promoted the proliferation of cervical cancer cells in vitro and tumor formation in vivo by accelerating cell cycle progression, upregulating cyclin A1, and downregulating p27 expression. Moreover, transcriptome sequencing analysis revealed that MAPK3 (ERK1) was upregulated in HK2-overexpressing HeLa cells. Further experiments found that the protein levels of p-Raf, p-MEK1/2, ERK1/2, and p-ERK1/2 were increased in HK2 over-expressing SiHa and HeLa cells. When ERK1/2 and p-ERK1/2 expression was blocked by an inhibitor (FR180204), reduced cyclin A1 expression was observed in HK2 over-expressing cells, with induced p27 expression and inhibited cell growth. Therefore, our data demonstrated that HK2 promoted the proliferation of cervical cancer cells by upregulating cyclin A1 and down-regulating p27 expression through the Raf/MEK/ERK signaling pathway.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Min Deng ◽  
Xiaodong Cai ◽  
Ling Long ◽  
Linying Xie ◽  
Hongmei Ma ◽  
...  

Abstract Background Accumulating evidence indicates that CD36 initiates metastasis and correlates with an unfavorable prognosis in cancers. However, there are few reports regarding the roles of CD36 in initiation and metastasis of cervical cancer. Methods Using immunohistochemistry, we analyzed 133 cervical cancer samples for CD36 protein expression levels, and then investigated the correlation between changes in its expression and clinicopathologic parameters. The effect of CD36 expression on the epithelial–mesenchymal transition (EMT) in cervical cancer cells was evaluated by Western immunoblotting analysis. In vitro invasion and in vivo metastasis assays were also used to evaluate the role of CD36 in cervical cancer metastasis. Results In the present study, we confirmed that CD36 was highly expressed in cervical cancer samples relative to normal cervical tissues. Moreover, overexpression of CD36 promoted invasiveness and metastasis of cervical cancer cells in vitro and in vivo, while CD36 knockdown suppressed proliferation, migration, and invasiveness. We demonstrated that TGF-β treatment attenuated E-cadherin expression and enhanced the expression levels of CD36, vimentin, slug, snail, and twist in si-SiHa, si-HeLa, and C33a–CD36 cells, suggesting that TGF-β synergized with CD36 on EMT via active CD36 expression. We also observed that the expression levels of TGF-β in si-SiHa cells and si-HeLa cells were down-regulated, whereas the expression levels of TGF-β were up-regulated in C33a–CD36 cells. These results imply that CD36 and TGF-β interact with each other to promote the EMT in cervical cancer. Conclusions Our findings suggest that CD36 is likely to be an effective target for guiding individualized clinical therapy of cervical cancer.


Sign in / Sign up

Export Citation Format

Share Document