In vitro biocompatibility study of biodegradable polyester scaffolds constructed using Fused Deposition Modeling (FDM)

2013 ◽  
Vol 46 (24) ◽  
pp. 356-360 ◽  
Author(s):  
Marcos Sabino ◽  
Zulielfre Fermín ◽  
Loaiza Marielys ◽  
Josnell Moret ◽  
Dubravska Rodríguez ◽  
...  
MRS Advances ◽  
2018 ◽  
Vol 3 (40) ◽  
pp. 2373-2378 ◽  
Author(s):  
Sandra E. Nájera ◽  
Monica Michel ◽  
Nam-Soo Kim

ABSTRACTPolymer composites of Polylactic acid (PLA) and poly-ε-caprolactone (PCL), containing small amounts of titanium oxide (TiO2) were developed for biomedical applications. These composite materials were prepared, and then printed using Fused Deposition Modeling (FDM). 3D printed structures were characterized to determine their mechanical properties and biocompatibility. DSC analysis yielded useful information regarding the immiscibility of the different polymers, and it was observed that the particles of TiO2 improved the stability of the polymers. The ultimate tensile strength and the fracture strain increased by adding TiO2 as a filler, resulting in values of approximately 45 MPa and 5.5 % elongation. The printed composites show excellent in vitro biocompatibility including cell proliferation and adhesion, and are therefore promising candidates to be used in the biomedical field for bone replacement procedures, due to their properties similar to those of cancellous bone.


2017 ◽  
Vol 11 (1) ◽  
Author(s):  
Matthias C. Wurm ◽  
Tobias Möst ◽  
Bastian Bergauer ◽  
Dominik Rietzel ◽  
Friedrich Wilhelm Neukam ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5889
Author(s):  
Petra Arany ◽  
Ildikó Papp ◽  
Marianna Zichar ◽  
Máté Csontos ◽  
János Elek ◽  
...  

One of the most promising emerging innovations in personalized medication is based on 3D printing technology. For use as authorized medications, 3D-printed products require different in vitro tests, including dissolution and biocompatibility investigations. Our objective was to manufacture implantable drug delivery systems using fused deposition modeling, and in vitro tests were performed for the assessment of these products. Polylactic acid, antibacterial polylactic acid, polyethylene terephthalate glycol, and poly(methyl methacrylate) filaments were selected, and samples with 16, 19, or 22 mm diameters and 0%, 5%, 10%, or 15% infill percentages were produced. The dissolution test was performed by a USP dissolution apparatus 1. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide dye (MTT)-based prolonged cytotoxicity test was performed on Caco-2 cells to certify the cytocompatibility properties. The implantable drug delivery systems were characterized by thermogravimetric and heatflow assay, contact angle measurement, scanning electron microscopy, microcomputed tomography, and Raman spectroscopy. Based on our results, it can be stated that the samples are considered nontoxic. The dissolution profiles are influenced by the material properties of the polymers, the diameter, and the infill percentage. Our results confirm the potential of fused deposition modeling (FDM) 3D printing for the manufacturing of different implantable drug delivery systems in personalized medicine and may be applied during surgical interventions.


Author(s):  
Jie Xie ◽  
Wu Wang ◽  
Ruibo Zhao ◽  
Wei Lu ◽  
Liang chen ◽  
...  

AbstractPolyvinyl alcohol (PVA) hydrogel has gained interest in cartilage repair because of its highly swollen, porosity, and viscoelastic properties. However, PVA has some deficiencies, such as its poor biocompatibility and microstructure. This research aimed to design novel hydroxyapatite (HA)-collagen (COL)-PVA hydrogels. COL was added to improve cell biocompatibility, and the microstructure of the hydrogels was controlled by fused deposition modeling (FDM). The feasibility of the COL-HA-PVA hydrogels in cartilage repair was evaluated by in vitro and in vivo experiments. The scanning electron microscopy results showed that the hybrid hydrogels had interconnected macropore structures that contained a COL reticular scaffold. The diameter of the macropore was 1.08–1.85 mm, which corresponds to the diameter of the denatured PVA column. The chondrocytes were then seeded in hydrogels to assess the cell viability and formation of the cartilage matrix. The in vitro results revealed excellent cellular biocompatibility. Osteochondral defects (8 mm in diameter and 8 mm in depth) were created in the femoral trochlear of goats, and the defects were implanted with cell-seeded hydrogels, cell-free hydrogels, or a blank control. The in vivo results showed that the COL-HA-PVA hydrogels effectively repaired cartilage defects, especially the conditions inoculated with chondrocyte in advance. This research suggests that the COL-HA-PVA hydrogels have promising application in cartilage repair.


2018 ◽  
Vol 33 (2) ◽  
pp. 281-294 ◽  
Author(s):  
Lukas Raddatz ◽  
Marline Kirsch ◽  
Dominik Geier ◽  
Jörn Schaeske ◽  
Kevin Acreman ◽  
...  

Biodegradable materials play a crucial role in both material and medical sciences and are frequently used as a primary commodity for implants generation. Due to their material inherent properties, they are supposed to be entirely resorbed by the patients' body after fulfilling their task as a scaffold. This makes a second intervention (e.g. for implant removal) redundant and significantly enhances a patient’s post-operative life quality. At the moment, materials for resorbable and biodegradable implants (e.g. polylactic acid or poly-caprolactone polymers) are still intensively studied. They are able to provide mandatory demands such as mechanical strength and attributes needed for high-quality implants. Implants, however, not only need to be made of adequate material, but must also to be personalized in order to meet the customers’ needs. Combining three dimensional-printing and high-resolution imaging technologies a new age of implant production comes into sight. Three dimensional images (e.g. magnetic resonance imaging or computed tomography) of tissue defects can be utilized as digital blueprints for personalized implants. Modern additive manufacturing devices are able to use a variety of materials to fabricate custom parts within short periods of time. The combination of high-quality resorbable materials and personalized three dimensional-printing for the custom application will provide the patients with the best suitable and sustainable implants. In this study, we evaluated and compared four resorbable and three dimensional printable materials for their in vitro biocompatibility, in vitro rate of degradation, cell adherence and behavior on these materials as well as support of osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells. The tests were conducted with model constructs of 1 cm2 surface area fabricated with fused deposition modeling three dimensional-printing technology.


2021 ◽  
Author(s):  
Ιάκωβος Ξενικάκης

Η χρήση μικροβελόνων είναι μία μέθοδος η οποία επιτρέπει τη διάτρηση της κερατίνης στιβάδας και το σχηματισμό πόρων μέσω των οποίων επιτυγχάνεται διαδερμική χορήγηση φαρμάκων. Με αυτή τη μέθοδο μπορούν να χορηγηθούν φάρμακα τα οποία σε άθικτο δέρμα έχουν μηδαμινή απορρόφηση. Τέτοιου είδους φάρμακα είναι και τα μακρομόρια, μεταξύ των οποίων και οι πρωτεΐνες. Η επίτευξη διαδερμικής χορήγησης μακρομορίων θα βελτίωνε την καθημερινότητα και τη συμμόρφωση στη θεραπεία ασθενών που υποχρεώνονται σε τακτική παρεντερική χορήγηση της θεραπείας τους (π.χ. διαβητικοί). Παράλληλα, η χρήση της Προσθετικής Κατασκευής επιτρέπει την κατασκευή των μικροβελόνων με γρήγορο, εύκολο, ευέλικτο και οικονομικό τρόπο χάρη στους ακόλουθους λόγους: α) τα σχέδια των μικροβελόνων σώζονται ως αρχεία .stl και μπορούν να τροποποιηθούν όποτε κριθεί απαραίτητο, β) η διαδικασία κατασκευής συνοψίζεται σε ένα στάδιο στο οποίο στιβάδες του υλικού εκτύπωσης εναποτίθεται διαδοχικά και ελεγχόμενα στην πλατφόρμα εκτύπωσης και γ) οι συσκευές που απαιτούνται για τη διεκπεραίωση της κατασκευής είναι πολύ απλές (ένας υπολογιστής και ένας εκτυπωτής), ενώ δεν γίνεται χρήση περίπλοκων μηχανών και συνηθισμένων εργαλείων. Το γεγονός αυτό επιτρέπει την εγκατάσταση μικρών μονάδων παραγωγής ακόμη και σε απομακρυσμένα μέρη. Επιπρόσθετα, η χρήση της Προσθετικής Κατασκευής για την κατασκευή μικροβελόνων επιτρέπει κατά περιπτώσεις την εξατομικευμένη χορήγηση φαρμάκων.Σκοπός της παρούσας διδακτορικής διατριβής ήταν η αξιοποίηση της Προσθετικής Κατασκευής και των πλεονεκτημάτων που προσφέρει με στόχο αφενός την κατασκευή συστοιχιών μικροβελόνων και αφετέρου τη χρήση αυτών για χορήγηση μακρομοριακών φαρμακευτικών ουσιών. Αρχικά η μελέτη επικεντρώθηκε στην κατασκευή των μικροβελόνων. Κατασκευάστηκαν δύο είδη μικροβελόνων: α) συμπαγείς (solid) μικροβελόνες με χρήση στερεολιθογραφίας (stereolithography, SLA) και β) κοίλες μικροβελόνες (HMNs) με εκτύπωση μέσω οθόνης υγρών κρυστάλλων (liquid crystal display, LCD). Σε κάθε περίπτωση οι μικροβελόνες προσδιορίστηκαν ως προς τη μορφολογία και τις διαστάσεις τους με χρήση οπτικής μικροσκοπίας και ηλεκτρονικού μικροσκοπίου σάρωσης (scanning electron microscopy, SEM). Επιπρόσθετα, έγινε μελέτη των μηχανικών τους ιδιοτήτων μέσω δοκιμών μονοαξονικής θλίψης, ενώ ακόμη έγιναν δοκιμές διείσδυσης σε δείγματα δέρματος ανθρώπινης προέλευσης. Παράλληλα, οι δοκιμές μονοαξονικής θλίψης και διείσδυσης προσομοιώθηκαν μέσω ανάλυσης πεπερασμένων στοιχείων (Finite Element Analysis, FEA). Οι συμπαγείς μικροβελόνες (6x6) χρησιμοποιήθηκαν για τη διαδερμική χορήγηση των πρότυπων χρωστικών καλσεΐνη και FITC-Dextran (4000Da). Ακολούθως έγινε επεξεργασία των αποτελεσμάτων διαπερατότητας και υπολογίστηκε η αύξηση της διαπερατότητας του δέρματος για κάθε χρωστική έπειτα από τη μεσολάβηση των μικροβελόνων. Στα δείγματα δέρματος που χρησιμοποιήθηκαν σε αυτά τα πειράματα έγιναν τομές με κρυοστάτη και χρώση αιματοξυλίνης-εοσίνης.Οι HMNs κατασκευάστηκαν αρχικά ως 3x3 συστοιχίες υπό γεωμετρία κυρτής τριγωνικής πυραμίδας. Ακολούθως μελετήθηκε η ικανότητα διάβασης υδατικού μέσου από τα μικροκανάλια και έτσι διαπιστώθηκε η ανάγκη προσθήκης επιφανειοδραστικού παράγοντα στην επιφάνεια των μικροβελόνων. Η επικάλυψη έγινε με 5% Pluronic F-127 και η προσθήκη του επιβεβαιώθηκε με φάσμα FTIR και μελέτη γωνίας επαφής. Για τις ανάγκες της χορήγησης κατασκευάστηκαν δεξαμενές με κατασκευή μέσω μοντελοποίησης απόθεσης τήγματος (fused deposition modeling, FDM). Οι δεξαμενές συναρμολογήθηκαν με τις μικροβελόνες δίνοντας την τελική συσκευή χορήγησης. Στη συνέχεια διεξήχθησαν μελέτες διαπερατότητας μέσω συνθετικών μεμβρανών χρησιμοποιώντας οξική οκτρεοτίδη. Ακόμη, χρησιμοποιώντας εκχυλίσματα τρισδιάστατα εκτυπωμένου υλικού έγιναν μελέτες τοξικότητας σε HaCaT κυτταρικές σειρές. Σε επόμενο στάδιο σχεδιάστηκε μια παραλλαγή των παραπάνω συστοιχιών και κατασκευάστηκαν 6x6 συστοιχίες μικροβελόνων της ίδιας γεωμετρίας. Επιπρόσθετα, κατασκευάστηκαν 6x6 συστοιχίες μικροβελόνων γεωμετρίας σύριγγας (syringe-like), καθώς και ρεζερβουάρ κατασκευασμένα με LCD μέθοδο. Έπειτα από προσθήκη επιφανειοδραστικού και διεξαγωγή υπολογιστικής μαγνητικής τομογραφίας (μ-OCT) όπου προσδιορίστηκαν οι εσωτερικοί όγκοι των μικροκαναλιών, τα δύο είδη μικροβελόνων χρησιμοποιήθηκαν για in vitro διαδερμική χορήγηση ινσουλίνης.Τα αποτελέσματα της έρευνας έδειξαν ότι οι μικροβελόνες που κατασκευάστηκαν ήταν κατάλληλες για διάτρηση του δέρματος καθώς και συνθετικών μεμβρανών. Διαστασιολογικά οι μικροβελόνες κυμαίνονται εντός των ορίων που εξασφαλίζουν την ανώδυνη εφαρμογή τους. Η μηχανική αντοχή τους επιτρέπει τη χρήση για την οποία προορίζονται χωρίς να υπάρχει κίνδυνος θραύσης και παραμονής τμήματος των μικροβελόνων εντός των ιστών του δέρματος, με συντελεστή ασφαλείας (safety factor) πολύ μεγαλύτερο της μονάδας και με τα αποτελέσματα FEA να είναι σε συμφωνία με τα πειραματικά δεδομένα. Η προσθήκη του επιφανειοδραστικού παράγοντα στις HMNs ήταν επιτυχής και επέτρεψε την ελεύθερη δίοδο υδατικών διαλυμάτων δραστικών ουσιών. Η κατασκευή των ρεζερβουάρ ήταν επίσης επιτυχής και απέδωσε τις επιθυμητές διαστάσεις, επιτρέποντας έτσι τη συναρμολόγηση των ρεζερβουάρ με τις HMNs χωρίς να σημειώνονται διαρροές. Σε όλες τις περιπτώσεις πειραμάτων διαπερατότητας παρατηρήθηκε αύξηση της ποσότητας δραστικής ουσίας που διαπερνά το δέρμα ή τις συνθετικές μεμβράνες έπειτα από τη μεσολάβηση των μικροβελόνων. Ακόμη, οι τοξικολογικές μελέτες έδειξαν ότι η τρισδιάστατα εκτυπωμένη ρητίνη είναι ασφαλής για ολιγόλεπτη επαφή με το δέρμα. Στην παρούσα διδακτορική διατριβή αποδείχθηκε ότι η Προσθετική Κατασκευή είναι κατάλληλη για κατασκευή μικροβελόνων και συνεπώς δίνεται η δυνατότητα να αξιοποιηθούν τα πλεονεκτήματα που προσφέρει ως μέθοδος. Επίσης, κατόπιν αποτελεσματικής διάτρησης του δέρματος, αποδείχθηκε ότι είναι εφικτή η διαδερμική χορήγηση φαρμάκων μεγάλου μοριακού βάρους (ενδεικτικά εδώ FITC-Dextran 4000Da, οξική οκτρεοτίδη, ινσουλίνη). Εν κατακλείδι, οι τρισδιάστατα εκτυπωμένες μικροβελόνες είναι κατάλληλες για διαδερμική χορήγηση μακρομορίων.


Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1304 ◽  
Author(s):  
Agnieszka Haryńska ◽  
Iga Gubanska ◽  
Justyna Kucinska-Lipka ◽  
Helena Janik

The possibility of using additive manufacturing (AM) in the medicine area has created new opportunities in health care. This has contributed to a sharp increase in demand for 3D printers, their systems and materials that are adapted to strict medical requirements. We described herein a medical-grade thermoplastic polyurethane (S-TPU) which was developed and then formed into a filament for Fused Deposition Modeling (FDM) 3D printers during a melt-extrusion process. S-TPU consisting of aliphatic hexamethylene 1,6-diisocyanate (HDI), amorphous α,ω-dihydroxy(ethylene-butylene adipate) (PEBA) and 1,4 butandiol (BDO) as a chain extender, was synthesized without the use of a catalyst. The filament (F-TPU) properties were characterized by rheological, mechanical, physico-chemical and in vitro biological properties. The tests showed biocompatibility of the obtained filament as well as revealed no significant effect of the filament formation process on its properties. This study may contribute to expanding the range of medical-grade flexible filaments for standard low-budget FDM printers.


Author(s):  
Agnieszka Haryńska ◽  
Iga Gubańska ◽  
Justyna Kucińska-Lipka ◽  
Helena Janik

The possibility of using additive manufacturing (AM) in the medicine area has created a new opportunities in health care. This has contributed to a sharp increase in demand for 3D printers, their systems and materials that are adapted to strict medical requirements. We described herein a medical-grade thermoplastic polyurethane (S-TPU), which was developed and then formed into a filament for Fused Deposition Modeling (FDM) 3D printers during a melt-extrusion process. S-TPU consisting of aliphatic hexamethylene 1,6-diisocyanate (HDI), amorphous α,ω-dihydroxy(ethylene-butylene adipate) (PEBA) and 1,4 butandiol (BDO) as a chain extender, was synthesized without the use of a catalyst. The filament properties were characterized by rheological, mechanical, physico-chemical and in vitro biological properties. The tests showed biocompatibility of the obtained filament as well as revealed no significant effect of the filament formation process on its properties. This study may contribute to expanding the range of medical-grade flexible filaments for standard low-budget FDM printers.


Sign in / Sign up

Export Citation Format

Share Document