OMCVD of thin films from metal diketonates and triphenylbismuth

1990 ◽  
Vol 5 (6) ◽  
pp. 1169-1175 ◽  
Author(s):  
A. D. Berry ◽  
R. T. Holm ◽  
M. Fatemi ◽  
D. K. Gaskill

Films containing the metals copper, yttrium, calcium, strontium, barium, and bismuth were grown by organometallic chemical vapor deposition (OMCVD). Depositions were carried out at atmospheric pressure in an oxygen-rich environment using metal beta-diketonates and triphenylbismuth. The films were characterized by Auger electron spectroscopy, Nomarski and scanning electron microscopy, and x-ray diffraction. The results show that films containing yttrium consisted of Y2O3 with a small amount of carbidic carbon, those with copper and bismuth were mixtures of oxides with no detectable carbon, and those with calcium, strontium, and barium contained carbonates. Use of a partially fluorinated barium beta-diketonate gave films of BaF2 with small amounts of BaCO3.

1991 ◽  
Vol 243 ◽  
Author(s):  
A. Greenwald ◽  
M. Horenstein ◽  
M. Ruane ◽  
W. Clouser ◽  
J. Foresi

AbstractSpire Corporation has deposited strontium-barium-niobate by chemical vapor deposition at atmospheric pressure using Ba(TMHD), Sr(TMHD), and Nb ethoxide. Deposition temperature as 550°C in an isothermal furnace. Films were deposited upon silicon (precoated with silica), platinum, sapphire, and quartz. Materials were characterized by RBS, X-ray diffraction, EDS, electron, and optical microscopy. Electrical and optical properties were measured at Boston University.


1995 ◽  
Vol 10 (5) ◽  
pp. 1307-1311 ◽  
Author(s):  
A. Martínez ◽  
J. Peña ◽  
M. Labeau ◽  
J.M. González-Calbet ◽  
M. Vallet-Regí

α-Fe2O3 thin films have been deposited on Si(111) substrates at high temperatures (600–800 °C) by the spray pyrolysis method. Four different iron(III) β-diketonates have been used as precursors in order to obtain polycrystalline films of good adherence, which have been characterized by x-ray diffraction, scanning electron microscopy, and magnetic measurements.


1990 ◽  
Vol 204 ◽  
Author(s):  
Alan D. Berry ◽  
Andrew P. Purdy ◽  
Richard L. Wells ◽  
James W. Pasterczyk ◽  
James D. Johansen ◽  
...  

ABSTRACTChemical vapor deposition experiments using (Me3Si)3As with either GaCl3 or Me3Ga at ambient pressure have produced films of GaAs on Si and semi-conducting GaAs substrates. The films have been characterized by X-ray diffraction and Auger electron spectroscopy, and each have small amounts of C and O impurities. No desired films were deposited from (C6F5)3GaAs(SiMe3)3 at 500°C and low pressures.


1996 ◽  
Vol 11 (12) ◽  
pp. 2955-2956 ◽  
Author(s):  
Yoshihiro Shintani

A highly (111)-oriented, highly coalesced diamond film was grown on platinum (111) surface by microwave plasma chemical vapor deposition (MPCVD). Scanning electron microscopy and x-ray diffraction analyses revealed that the (111) diamond facets were azimuthally oriented epitaxially with respect to the orientation of the Pt(111) domain underneath, with the neighboring facets of diamond being coalesced with each other. The film was confirmed as diamond using Raman spectroscopy.


2012 ◽  
Vol 3 ◽  
pp. 6-9 ◽  
Author(s):  
Ananta R. Acharya ◽  
Brian D. Thoms

The compositional, structural and optical characterizations of In1-xGaxN epilayers grown by high pressure chemical vapor deposition have been carried out using Auger electron spectroscopy, x-ray diffraction and optical transmission spectroscopy. Auger electron spectroscopy revealed 14% gallium and 86% indium composition of the total metal contents in the In1-xGaxN epilayers. X-ray diffraction pattern showed three prominent peaks centered at 31.4?, 32.86? and 34.5? which are assigned to In1-xGaxN (0002), In (101) and GaN (0002) Bragg reflexes respectively. These results indicate no macroscopic observable phase separation in the analyzed In1-xGaxN sample. The optical transmission spectroscopy and the Beer-Lambert’s law quatified the absorption band edge to be 1.6 eV for the analyzed In1-xGaxN epilayers.The Himalayan PhysicsVol. 3, No. 32012Page: 6-9


2021 ◽  
Vol 21 (4) ◽  
pp. 2388-2393
Author(s):  
Anna Szabó ◽  
Gábor Kovács ◽  
Anita Kovács ◽  
Klara Hernadi

The synthesis and investigation of vertically aligned carbon nanotube (VACNT) based materials are gaining more-and-more interest among scientists due to their specific properties (e.g., electrical, optical, mechanical). Therefore, our interest for the present research has focused on synthesis of WO3/VACNT based nanostructures (using carbon nanotube forests obtained by catalytic chemical vapor deposition—CCVD method on aluminum substrate) using different synthesis pathways and WO3 precursors. The obtained composites were investigated by scanning electron microscopy (SEM), Raman spectroscopy, while the obtained crystal structures were characterized by X-ray diffraction (XRD). Results have shown that depending on the synthesis method, and using as template the carbonaceous structure, we can successfully obtain non-stochiometric tungsten oxide (W18O49) or WO3 composites.


1991 ◽  
Vol 249 ◽  
Author(s):  
Youming Xiao ◽  
Beng Jit Tan ◽  
Steven L. Suib ◽  
Francis S. Galasso

ABSTRACTCoating of SiC (BP-SIGMA) fibers with alumina by a sol-gel process did not cause degradation even after heating to 1000°C in air for 24 h. X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Auger electron spectroscopy (AES) and scanning electron microscopy (SEM ) methods were used to study the coating fiber interface.


2013 ◽  
Vol 30 ◽  
pp. 111-117 ◽  
Author(s):  
Harish K. Dubey ◽  
L. P. Deshmukh ◽  
D. E. Kshirsagar ◽  
Vijay S. Jadhav ◽  
Madhuri Sharon ◽  
...  

Antimony Sulphoiodide is most widely studied compound in group V-VI-VII family due to its largenumber of properties. Varoius methods of synthesis have been reported. We are the first to reportsynthesis of shiny SbSI crystals by the Chemical Vapor Deposition (CVD) technique using powder ofAntimony, Sulphur and Iodine as the starting material. Needle shaped thin crystals of SbSI were foundgrown vertically on the walls of the quartz tube. Characterizations of the sample were done usingdifferent techniques such as powder X-ray diffraction (XRD), scanning electron microscopy (SEM)and energy dispersive X-ray analysis (EDAX). The charcteristcs peaks in Raman scattering plots (0-500 cm-1) match with the reported results. The compound exibits high resitivity at room temperaturein the order of 10-7 Ω-cm and dielectric constant in the order of 10-3 measured at 1 KHz.DOI: http://dx.doi.org/10.3126/jncs.v30i0.9381Journal of Nepal Chemical Society Vol. 30, 2012 Page:  111-117 Uploaded date: 12/20/2013   


Sign in / Sign up

Export Citation Format

Share Document