Formation and characterization of thin film vanadium oxides: Auger electron spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, and optical reflectance studies

1991 ◽  
Vol 198 (1-2) ◽  
pp. 251-268 ◽  
Author(s):  
A.Z. Moshfegh ◽  
A. Ignatiev
1991 ◽  
Vol 249 ◽  
Author(s):  
Youming Xiao ◽  
Beng Jit Tan ◽  
Steven L. Suib ◽  
Francis S. Galasso

ABSTRACTCoating of SiC (BP-SIGMA) fibers with alumina by a sol-gel process did not cause degradation even after heating to 1000°C in air for 24 h. X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Auger electron spectroscopy (AES) and scanning electron microscopy (SEM ) methods were used to study the coating fiber interface.


1990 ◽  
Vol 5 (6) ◽  
pp. 1169-1175 ◽  
Author(s):  
A. D. Berry ◽  
R. T. Holm ◽  
M. Fatemi ◽  
D. K. Gaskill

Films containing the metals copper, yttrium, calcium, strontium, barium, and bismuth were grown by organometallic chemical vapor deposition (OMCVD). Depositions were carried out at atmospheric pressure in an oxygen-rich environment using metal beta-diketonates and triphenylbismuth. The films were characterized by Auger electron spectroscopy, Nomarski and scanning electron microscopy, and x-ray diffraction. The results show that films containing yttrium consisted of Y2O3 with a small amount of carbidic carbon, those with copper and bismuth were mixtures of oxides with no detectable carbon, and those with calcium, strontium, and barium contained carbonates. Use of a partially fluorinated barium beta-diketonate gave films of BaF2 with small amounts of BaCO3.


1989 ◽  
Vol 4 (6) ◽  
pp. 1320-1325 ◽  
Author(s):  
Q. X. Jia ◽  
W. A. Anderson

Effects of hydrofluoric acid (HF) treatment on the properties of Y–Ba–Cu–O oxides were investigated. No obvious etching of bulk Y–Ba–Cu–O and no degradation of zero resistance temperature were observed even though the oxides were placed into 49% HF solution for up to 20 h. Surface passivation of Y–Ba–Cu–O due to HF immersion was verified by subsequent immersion of Y–Ba–Cu–O in water. A thin layer of amorphous fluoride formed on the surface of the Y–Ba–Cu–O during HF treatment, which limited further reaction between Y–Ba–Cu–O and HF, and later reaction with water. Thin film Y–Ba–Cu–O was passivated by HF vapors and showed no degradation in Tc-zero after 30 min immersion in water. The properties of the surface layer of Y–Ba–Cu–O oxide after HF treatment are reported from Auger electron spectroscopy, x-ray diffraction, and scanning electron microscopy studies.


2000 ◽  
Vol 15 (10) ◽  
pp. 2076-2079
Author(s):  
Chika Nozaki ◽  
Takashi Yamada ◽  
Kenji Tabata ◽  
Eiji Suzuki

Synthesis of a rutile-type lead-substituted tin oxide with (110) face was investigated. The characterization was performed by x-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, infrared spectroscopy, x-ray photoelectron spectroscopy, and Brunauer–Emmett–Teller surface area measurements. The homogeneous rutile-type lead-substituted tin oxide was obtained until 4.1 mol% of tin was substituted with lead. The surface of obtained oxide had a homogeneously lead-substituted (110) face.


2007 ◽  
Vol 1008 ◽  
Author(s):  
Micha Jost ◽  
Peter Gerstel ◽  
Joachim Bill ◽  
Fritz Aldinger

AbstractIn this paper, the suitability of DNA- and RNA-bases, nucleosides and nucleotides, and DNA itself as structure-directing agents for the mineralization of ZnO-based materials is discussed. Those bioorganic molecules are able to trigger the morphology of mineralization products ranging from smooth, homogenous thin films to sponge-like, sheet-like and fibrous products. Besides the investigation of morphological features by scanning electron microscopy, the structural characterization of these materials by X-ray diffraction, vibrational spectroscopy, photoluminescence spectroscopy and photoelectron spectroscopy is discussed.


1994 ◽  
Vol 365 ◽  
Author(s):  
N.R. Khasgiwale ◽  
E.P. Butler ◽  
L. Tsakalakos ◽  
D.A. Hensley ◽  
W.R. Cannon ◽  
...  

ABSTRACTPseudo-porous SiC/C coatings were deposited on Nextel™440 and Nicalon™ fibers by CVD. The morphology and chemistry of the coatings was evaluated, both before and after oxidation, using Scanning Electron Microscopy (SEM), X-Ray Diffraction Analysis (XRD), X-Ray Photoelectron Spectroscopy (XPS) and Auger spectroscopy. Coated fibers were subjected to two different oxidation treatments to assess coating stability: a) oxidation at 600°C for 20 hours, and b) oxidation at 1000°C for 20 hours. Pseudo-porous SiC/C on Nicalon™ fibers appear to be more oxidation resistant than the same coatings on Nextel™440 fibers.


Sign in / Sign up

Export Citation Format

Share Document