Stress in evaporated films used in GaAs processing

1991 ◽  
Vol 6 (3) ◽  
pp. 548-552 ◽  
Author(s):  
W.A. Strifler ◽  
C.W. Bates

A simple and practical method is described for determining the residual stress in vapor deposited thin films that are less than 1000 Å in thickness. The method relies on the evaporation of thin films onto prefabricated micro-cantilever beams of SiO2. The vertical deflection at the end of the beam is measured using an optical microscope to determine the average film stress with a resolution of 25 MPa. Calculations show that the vapor deposition of metal films onto these beams does not induce significant heating, so the thermal component of residual film stress is minimal. The micro-cantilever technique is used to measure the film stress in 500 Å films of Al, Ti, Pt, Au, Ni, and Ge. These measured values are compared to similar measurements reported in the literature.

1988 ◽  
Vol 130 ◽  
Author(s):  
S. Hong ◽  
T. P. Weihs ◽  
J. C. Bravman ◽  
W. D. Nix

AbstractA method for determining mechanical parameters and residual stresses for thin films is described. Multi-layer cantilever beams (LPCVD SiNx/thermal SiO2) are fabricated utilizing standard IC processing technologies and micromachining of silicon. The elastic response of the beams to imposed deflections is then measured using a Nanoindenter, a sub-micron hardness testing machine. The elastic constants of the nitride films are calculated from the force vs. deflection slope and known elastic constants of the thermal SiO2 and silicon. By measuring the curvature of the multi-layer cantilever beams with a scanning electron microscope after successive etching of the LPCVD nitride films, average and differential stresses in the films were calculated.


1992 ◽  
Vol 276 ◽  
Author(s):  
A. Bruno Frazier ◽  
M. R. Khan ◽  
Mark G. Allen

ABSTRACTThe piezoresistive effect of materials is used as the basis for many types of microsensors. Polyimide, a material widely used in microelectronic fabrication, may be made to exhibit this effect by addition of small graphite particles to form a composite material. Polyimide / graphite based piezoresistive films have the advantage of being spin-castable, plasma-processable, highly chemically resistant, and thermally stable up to 400 °C in nitrogen atmospheres. In this work, piezoresistive polyimide films are formed by addition of various amounts (loadings) of graphite particles one micron in diameter or less to DuPont PI-2555 polyimide. Thin films of these materials are spin-cast on silicon wafers, and an in-situ load-deflection measurement technique is used to evaluate the following film properties: piezoresistive coefficient as a function of both strain and graphite loading; Young's modulus as a function of graphite loading; and residual film stress as a function of graphite loading. The observed piezoresistive coefficient is a strong function of graphite loading, with good piezoresistive properties exhibited in the loading range of 15–25 wt% graphite.


2002 ◽  
Vol 17 (9) ◽  
pp. 2235-2242 ◽  
Author(s):  
G. G. Dougherty ◽  
A. A. Pisano ◽  
T. Sands

It is known that thin films of polycrystalline silicon, deposited under the right conditions, can be permeable to HF-based etching solutions. While these films offer unique capabilities for microfabrication, both the poor reproducibility of the permeable film properties and the lack of a detailed physical understanding of the material have limited their application. This work provides a methodical study of the relationship between process, microstructure, and properties of permeable polycrystalline silicon thin films. It is shown that the permeability is a result of small pores, on the order of 10 nm, between the 100–200-nm hemispherical grains characteristic of the permeable film morphology. This morphology occurs only in nearly stress-free films grown in a narrow temperature range corresponding to the transition between tensile and compressive film growth regimes. This result strongly suggests that the monitoring of residual film stress can provide the process control needed to reliably produce permeable films. A simple kinetic model is proposed to explain the evolution of the morphology of the permeable films.


Author(s):  
Klaus-Ruediger Peters ◽  
Samuel A. Green

High magnification imaging of macromolecules on metal coated biological specimens is limited only by wet preparation procedures since recently obtained instrumental resolution allows visualization of topographic structures as smal l as 1-2 nm. Details of such dimensions may be visualized if continuous metal films with a thickness of 2 nm or less are applied. Such thin films give sufficient contrast in TEM as well as in SEM (SE-I image mode). The requisite increase in electrical conductivity for SEM of biological specimens is achieved through the use of ligand mediated wet osmiuum impregnation of the specimen before critical point (CP) drying. A commonly used ligand is thiocarbohvdrazide (TCH), first introduced to TEM for en block staining of lipids and glvcomacromolecules with osmium black. Now TCH is also used for SEM. However, after ligand mediated osinification nonspecific osmium black precipitates were often found obscuring surface details with large diffuse aggregates or with dense particular deposits, 2-20 nm in size. Thus, only low magnification work was considered possible after TCH appl ication.


2002 ◽  
Vol 7 (2) ◽  
pp. 45-52
Author(s):  
L. Jakučionis ◽  
V. Kleiza

Electrical properties of conductive thin films, that are produced by vacuum evaporation on the dielectric substrates, and which properties depend on their thickness, usually are anisotropic i.e. they have uniaxial anisotropy. If the condensate grow on dielectric substrates on which plane electrical field E is created the transverse voltage U⊥ appears on the boundary of the film in the direction perpendicular to E. Transverse voltage U⊥ depends on the angle γ between the applied magnetic field H and axis of light magnetisation. When electric field E is applied to continuous or grid layers, U⊥ and resistance R of layers are changed by changing γ. It means that value of U⊥ is the measure of anisotropy magnitude. Increasing voltage U0 , which is created by E, U⊥ increases to certain magnitude and later decreases. The anisotropy of continuous thin layers is excited by inequality of conductivity tensor components σ0 ≠ σ⊥. The reason of anisotropy is explained by the model which shows that properties of grain boundaries are defined by unequal probability of transient of charge carrier.


2003 ◽  
Vol 779 ◽  
Author(s):  
T. John Balk ◽  
Gerhard Dehm ◽  
Eduard Arzt

AbstractWhen confronted by severe geometric constraints, dislocations may respond in unforeseen ways. One example of such unexpected behavior is parallel glide in unpassivated, ultrathin (200 nm and thinner) metal films. This involves the glide of dislocations parallel to and very near the film/substrate interface, following their emission from grain boundaries. In situ transmission electron microscopy reveals that this mechanism dominates the thermomechanical behavior of ultrathin, unpassivated copper films. However, according to Schmid's law, the biaxial film stress that evolves during thermal cycling does not generate a resolved shear stress parallel to the film/substrate interface and therefore should not drive such motion. Instead, it is proposed that the observed dislocations are generated as a result of atomic diffusion into the grain boundaries. This provides experimental support for the constrained diffusional creep model of Gao et al.[1], in which they described the diffusional exchange of atoms between the unpassivated film surface and grain boundaries at high temperatures, a process that can locally relax the film stress near those boundaries. In the grains where it is observed, parallel glide can account for the plastic strain generated within a film during thermal cycling. One feature of this mechanism at the nanoscale is that, as grain size decreases, eventually a single dislocation suffices to mediate plasticity in an entire grain during thermal cycling. Parallel glide is a new example of the interactions between dislocations and the surface/interface, which are likely to increase in importance during the persistent miniaturization of thin film geometries.


1993 ◽  
Vol 321 ◽  
Author(s):  
Gregory J. Exarhos ◽  
Nancy J. Hess

AbstractIsothermal annealing of amorphous TiO2 films deposited from acidic sol-gel precursor solutions results in film densification and concomitant increase in refractive index. Subsequent heating above 300°C leads to irreversible transformation to an anatase crystalline phase. Similar phenomena occur when such amorphous films are subjected to focused cw laser irradiation. Controlled variations in laser fluence are used to density or crystallize selected regions of the film. Low fluence conditioning leads to the evolution of a subtle nanograin-size morphology, evident in AFM images, which appears to retard subsequent film crystallization when such regions are subjected to higher laser fluence. Time-resolved Raman spectroscopy has been used to characterize irradiated regions in order to follow the crystallization kinetics, assess phase homogeneity, and evaluate accompanying changes in residual film stress.


2003 ◽  
Vol 93 (9) ◽  
pp. 5201-5209 ◽  
Author(s):  
A. C. Dürr ◽  
F. Schreiber ◽  
M. Kelsch ◽  
H. D. Carstanjen ◽  
H. Dosch ◽  
...  
Keyword(s):  

2021 ◽  
Vol 1 (12 (109)) ◽  
pp. 22-28
Author(s):  
Aladin Eko Purkuncoro ◽  
Rudy Soenoko ◽  
Dionysius Joseph Djoko Herry Santjojo ◽  
Yudy Surya Irawan

Carbon thin films on SKD11 steel were deposited by 40 kHz frequency plasma sputtering technique using a waste of battery carbon rods in argon plasma, and their mechanical properties were investigated by various target-substrate distances (1 cm, 1.7 cm, 2 cm, and 2.4 cm). The power used is 340 watts, the vacuum time is 90 minutes, and the gas flow rate is 80 ml/minute. The deposition time of carbon in plasma sputtering is 120 minutes with the initial temperature (temperature during vacuum) of 28 oC and the final temperature (the temperature after plasma sputtering) is 300 oC. The hardness value of SKD11 steel deposited with carbon thin films on SKD11 with target-substrate distance was tested using the Vickers microhardness test. Testing the thickness of the carbon thin films on the SKD11 steel substrate was carried out using a Nikon type 59520 optical microscope. Qualitative analysis of the thickness of the carbon thin films on the SKD11 steel substrate at a scale of 20 μm is shown by an optical microscope. Qualitatively, the thin film at a distance of 1.7 cm looks the brightest and thickest than other distance variations. Based on the Vickers microhardness test and Nikon type 59520 optical microscope, at the distance of 1 cm to 1.7 cm, the average thickness and hardness increased from 10,724 μm (286.6 HV) to 13,332 μm (335.9 HV). Furthermore, at the variation of the distance from 1.7 cm to 2.4 cm, the average thickness and hardness continued to decrease from 13.332 μm (335.9 HV) to 7.257 μm (257.3 HV). The possibility of interrupting atoms colliding with argon atoms in inert conditions increases at a long distance, thus causing the deposition flux on the SKD11 steel substrate to decrease


Sign in / Sign up

Export Citation Format

Share Document