Morphological and structural evolutions of nonequilibrium titanium-nitride alloy powders produced by reactive ball milling

1992 ◽  
Vol 7 (4) ◽  
pp. 888-893 ◽  
Author(s):  
M. Sherif El-Eskandarany ◽  
K. Sumiyama ◽  
K. Aoki ◽  
K. Suzuki

Nonequilibrium titanium-nitride alloy powders have been fabricated by a high energetic ball mill under nitrogen gas flow at room temperature and characterized by means of x-ray diffraction, scanning electron microscopy, transmission electron microscopy, and differential scanning calorimetry. Initial hcp titanium is completely transformed to nonequilibrium-fcc Ti–N after 720 ks of the milling time. The fcc Ti–N phase is stable at relatively low temperature and transforms at 855 K to Ti2N and δ phases. At the final stage of milling, the particle- and grain-sizes of alloy powders are 1 mm and 5 nm, respectively, and the lattice parameter is 0.419 nm.

2011 ◽  
Vol 412 ◽  
pp. 263-266
Author(s):  
Hong Wei Zhang ◽  
Li Li Zhang ◽  
Feng Rui Zhai ◽  
Jia Jin Tian ◽  
Can Bang Zhang

The higher mechanical strength of Al87Ce3Ni8.5Mn1.5 nanophase amorphous composites has been obtained with two methods. The first nanophase amorphous composites are directly produced by the single roller spin quenching technology. The method taken for the second nanophase amorphous composites is at first to obtain amorphous single-phase alloy, followed by annealed at different temperatures .The formative condition, the microstructure, the particle size, the volume fraction of α-Al phase and microhardness of nanophase amorphous composites etc have been investigated and compared by X-ray diffraction (XRD) and transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The microstructure of composites produced by the second method is higher than the former, the fabricated material structure of the system is more uniform and the process is easier to control.


1991 ◽  
Vol 230 ◽  
Author(s):  
Toyohiko J. Konno ◽  
Robert Sinclair

AbstractThe crystallization of amorphous Si in a Al/Si multilayer (with a modulation length of about 120Å) was investigated using transmission electron microscopy, differential scanning calorimetry and X-ray diffraction. Amorphous Si was found to crystallize at about 175 °C with the heat of reaction of 11±2(kJ/mol). Al grains grow prior to the nucleation of crystalline Si. The crystalline Si was found to nucleate within the grown Al layers. The incipient crystalline Si initially grows within the Al layer and then spreads through the amorphous Si and other Al layers. Because of extensive intermixing, the original layered structure is destroyed. The Al(111) texture is also enhanced.


2004 ◽  
Vol 19 (12) ◽  
pp. 3586-3591 ◽  
Author(s):  
Jiyang Chen ◽  
Ying Shi ◽  
Jianlin Shi

Nano-sized (Y,Gd)2O3:Eu powders were synthesized by a novel co-precipitation processing in which a mixture of ammonium hydroxide and ammonium hydrogen carbonate was adopted as a complex precipitant. Evolution behaviors of precursors during calcinations were studied by means of thermogravimetry-differential scanning calorimetry-mass spectrum, Fourier transform infrared, x-ray diffraction, scanning electron microscopy, and transmission electron microscopy in detail. Nano-sized (Y,Gd)2O3:Eu powder as prepared possessed a primary grain size of about 30 nm and specific surface area of 38 m2/g after being calcined at 850 °C for 2 h, showing much finer grains and less agglomeration. The as prepared nanopowder shows intense luminescence at 611nm under x-ray or ultraviolet excitation. Transparent (Y,Gd)2O3:Eu ceramics can also be fabricated using this high sinterable nanopowder.


2009 ◽  
Vol 24 (1) ◽  
pp. 39-49 ◽  
Author(s):  
J. Zhang ◽  
B. Liu ◽  
J.Y. Wang ◽  
Y.C. Zhou

Transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and x-ray diffraction (XRD) investigations were conducted on the hot-pressed Ti2SnC bulk ceramic. Microstructure features of bulk Ti2SnC ceramic were characterized by using TEM, and a needle-shaped β-Sn precipitation was observed inside Ti2SnC grains with the orientation relationship: (0001) Ti2SnC // (200) Sn and Ti2SnC // [001] Sn. With the combination of DSC and XRD analyses, the precipitation of metallic Sn was demonstrated to be a thermal stress-induced process during the cooling procedure. The reheating temperature, even as low as 400 °C, could trigger the precipitation of Sn from Ti2SnC, which indicated the low-temperature instability of Ti2SnC. A substoichiometry Ti2SnxC formed after depletion of Sn from ternary Ti2SnC phase. Under electron beam irradiation, metallic Sn was observed diffusing back into Ti2SnxC. Furthermore, a new Ti7SnC6 phase with the lattice constants of a = 0.32 and c = 4.1 nm was identified and added in the Ti-Sn-C ternary system.


2014 ◽  
Vol 21 (1) ◽  
pp. 108-119 ◽  
Author(s):  
Daniela Nunes ◽  
Lídia Santos ◽  
Paulo Duarte ◽  
Ana Pimentel ◽  
Joana V. Pinto ◽  
...  

AbstractThe present work reports a simple and easy wet chemistry synthesis of cuprous oxide (Cu2O) nanospheres at room temperature without surfactants and using different precursors. Structural characterization was carried out by X-ray diffraction, transmission electron microscopy, and scanning electron microscopy coupled with focused ion beam and energy-dispersive X-ray spectroscopy. The optical band gaps were determined from diffuse reflectance spectroscopy. The photoluminescence behavior of the as-synthesized nanospheres showed significant differences depending on the precursors used. The Cu2O nanospheres were constituted by aggregates of nanocrystals, in which an on/off emission behavior of each individual nanocrystal was identified during transmission electron microscopy observations. The thermal behavior of the Cu2O nanospheres was investigated with in situ X-ray diffraction and differential scanning calorimetry experiments. Remarkable structural differences were observed for the nanospheres annealed in air, which turned into hollow spherical structures surrounded by outsized nanocrystals.


1996 ◽  
Vol 11 (6) ◽  
pp. 1458-1469 ◽  
Author(s):  
R. Chowdhury ◽  
R. D. Vispute ◽  
K. Jagannadham ◽  
J. Narayan

Laser physical vapor deposition (LPVD) has been used to grow titanium nitride films on hydrogen-terminated silicon(100) substrates at deposition temperatures ranging from room temperature to 600 °C. A pulsed KrF excimer laser (λ = 248 nm, τ = 25 ns) was used with the deposition chamber maintained at a base pressure of 10−7 Torr prior to deposition. Different properties of the films were investigated by x-ray diffraction, Auger electron spectroscopy, Raman spectroscopy, optical, scanning, and high resolution transmission electron microscopy, and measurement of electrical resistivity. When the substrate temperature was low (at and below 500 °C), oxygen atoms from the residual gases were incorporated in the films. The microstructures and resistivities of TiN films were found to be strongly dependent on the temperature of the silicon substrates. The TiN films deposited at 600 °C were oxygen-free, as observed from Auger analysis, and the room temperature resistivity was found to be 14–15 μΩ-cm. Raman spectroscopy of the films showed that the nitrogen-related optical phonon peak increased with deposition temperature in comparison with the titanium-related acoustic peak. Transmission electron microscopy and x-ray diffraction analyses showed that the films were polycrystalline at low temperature with grain size ranging from 300–600 Å, depending on the temperature of the substrate. At 600 °C, the films were found to be single crystals with occasional presence of dislocation loops. The spacing of Moiré fringes in TiN/Si samples deposited at 600 °C established the nearly periodic elastic strain field extending into the TiN and Si at the interface. Although there exists a large misfit between TiN and Si (24.6%), the epitaxial growth of TiN films on Si(100) substrates was explained by means of domain-matched epitaxy with a 4-to-3 match in unit cells for TiN/Si structure, giving rise to a residual lattice misfit of only 4%.


2002 ◽  
Vol 17 (5) ◽  
pp. 1014-1018 ◽  
Author(s):  
Dmitri V. Louzguine ◽  
Akihisa Inoue

The present paper reports the effect of partial replacement of Ni by Cu in the Al85Y8Ni5Co2 alloy. The studied alloys were produced by rapid solidification. Glass-formation, crystallization behavior, and stability of the supercooled liquid were studied by x-ray diffraction, transmission electron microscopy, and differential scanning calorimetry. Partial replacement of Ni by Cu in the Al85Y8Ni5Co2 metallic glass caused formation of the nanoscale α–Al particles and resulted in a decrease in the crystallization temperature and disappearance of the supercooled liquid.


2016 ◽  
Vol 850 ◽  
pp. 742-747
Author(s):  
Xiang Zhang ◽  
Ping Yun Li ◽  
Xiao De Guo ◽  
Ting Yan

Ultrafine alumina powders were synthesized through pyrocatechol and resorcinol mediated sol-gel process. Aluminum nitrate was applied as the Al source and PVP was the dispersant. X-ray diffraction (XRD) study displayed that γ-Al2O3 powders formed in the range of 800-900 °C, and then γ-Al2O3 transformed to α-Al2O3 at higher temperatures, pure α-Al2O3 powders could be obtained at 1000 °C by using resorcinol as organic monomer. The results of transmission electron microscopy (TEM) revealed that Al2O3 nanoparticles with γ crystalline phase had grain sizes in the range of 5-40 nm. Scanning electron microscopy (SEM) observation displayed that the morphology of the prepared α-Al2O3 powders had aggregated bodies formed by Al2O3 grains in the range of 0.2-0.5μm. These results provide a new way of preparation of alumina powders.


Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 33
Author(s):  
Bwalya A. Witika ◽  
Vincent J. Smith ◽  
Roderick B. Walker

Lamivudine (3TC) and zidovudine (AZT) are antiretroviral agents used to manage HIV/AIDS infection. A wet media milling top-down approach was used to develop and produce nano co-crystals of 3TC and AZT. Micro co-crystals were prepared by solvent evaporation and subsequently milled in the presence of two surfactants, viz., sodium lauryl sulfate (SLS) and α-tocopheryl polyethylene glycol succinate 1000 (TPGS 1000). Optimisation was undertaken using design of experiments (DoE) and response surface methodology (RSM) to establish and identify parameters that may affect the manufacturing of nano co-crystals. The impact of SLS and TPGS 1000 concentration, milling time, and number of units of milling medium on the manufacturing of nano co-crystals, was investigated. The critical quality attributes (CQA) monitored were particle size (PS), Zeta potential (ZP), and polydispersity index (PDI). Powder X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry, transmission electron microscopy, energy dispersive X-ray spectroscopy scanning electron microscopy, and cytotoxicity assays were used for additional characterization of the optimised nano co-crystal. The mean PS, PDI, and ZP of the optimised top-down nanocrystal were 271.0 ± 92.0 nm, 0.467 ± 0.073, and −41.9 ± 3.94 mV, respectively. In conclusion, a simple, inexpensive, rapid, and precise method of nano co-crystal manufacturing was developed, validated, and optimised using DoE and RSM, and the final product exhibited the target CQA.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5330
Author(s):  
Laura-Madalina Cursaru ◽  
Sorina Nicoleta Valsan ◽  
Maria-Eliza Puscasu ◽  
Ioan Albert Tudor ◽  
Nicoleta Zarnescu-Ivan ◽  
...  

Recently, carbon nanotubes (CNTs) have been used extensively to develop new materials and devices due to their specific morphology and properties. The reinforcement of different metal oxides such as zinc oxide (ZnO) with CNT develops advanced multifunctional materials with improved properties. Our aim is to obtain ZnO-CNT nanocomposites by in situ hydrothermal method in high-pressure conditions. Various compositions were tested. The structure and morphology of ZnO-CNT nanocomposites were analyzed by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry—thermogravimetry (DSC-TG), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). These analyses showed the formation of complex ZnO-CNT structures. FT-IR spectra suggest possible interactions between CNT and ZnO. DSC-TG analysis also reveals the formation of some physical bonds between ZnO and CNT, through the appearance of endothermic peaks which could be assigned to the decomposition of functional groups of the CNT chain and breaking of the ZnO-CNT bonds. XRD characterization demonstrated the existence of ZnO nanocrystallites with size around 60 nm. The best ZnO:CNT composition was further selected for preliminary investigations of the potential of these nanocomposite powders to be processed as pastes for extrusion-based 3D printing.


Sign in / Sign up

Export Citation Format

Share Document