Microstructure of TiN films and interfaces formed by ion-beam-enhanced deposition and simple physical vapor deposition

1995 ◽  
Vol 10 (4) ◽  
pp. 995-999 ◽  
Author(s):  
Z.Y. Cheng ◽  
Jing Zhu ◽  
X.H. Liu ◽  
Xi Wang ◽  
G.Q. Yang

The microstructure and composition of TiN films, formed by ion beam enhanced deposition (IBED) with different energy (40 keV and 90 keV) xenon ion bombardment and by simple physical vapor deposition (hereafter S-PVD) without any ion beam enhancement, and the interfaces between TiN films and Si substrates have been studied by cross-sectional view analytical electron microscopy in this work. Both the IBED TiN films prepared by Xe+ bombardment with either 40 keV or 90 keV energy ions and the S-PVD TiN film consist of nanocrystals. The TEM observations in the S-PVD case reveal an amorphous layer and a mixed layer of TiN grains and amorphous material at the TiN/Si interface. The thicknesses of the amorphous layer and the mixed layer are about 210 nm and at least 40 nm, respectively. Upon 40 keV Xe+ bombardment, an amorphous Si transition layer of about 50 nm thickness is found at the TiN/Si interface, and the TiN grains close to the TiN/Si interface are of weak preferred orientation. Upon 90 keV Xe+ bombardment, amorphous TiN and Si layers are found with a total thickness of 80 nm at the TiN/Si interface, and the TiN grains near the TiN/Si interface are of preferred orientation [111]TiN ‖ [001]Si. The energy of xenon ion bombardment has a strong effect on the microstructural characteristics of TiN films and the interfaces between the TiN films and the Si substrates, as well as the size and the preferred orientation of TiN grains.

1990 ◽  
Vol 202 ◽  
Author(s):  
C.M. Cotell ◽  
J.A. Sprague ◽  
C.R. Gossett

ABSTRACTThin films of Ag were grown on amorphous C and <111= Si substrates with simultaneous Ar+ bombardment at energies ranging from 50–40,000 eV. For deposition of Ag on amorphous C, ion beam bombardment induced no changes in film nucleation behavior relative to evaporation (henceforth referred to as physical vapor deposition, PVD). Film growth was affected at the highest energy (40 keV); the grain size of the Ag films was increased by a factor of three. Rutherford Backscattering (RBS) measurements on Ag films on <111=Si bombarded with Ar+ at 1.5 keV showed that the Ag sputtering yield at film thicknesses <1.5 nm was less than for bulk Ag, in agreement with TRIM calculations. At 40 keV there was evidence for an additional effect of the ion beam due to recoil implantation or ion mixing. Electron diffraction from Ag fdms grown on <111= Si substrates with simultaneous Ar+ bombardment at either 1.5 keV or 40 keV showed evidence for only the expected phases: single crystal Si, polycrystalline Ag, and an amorphous phase that likely resulted from ion damage to the substrate.


1995 ◽  
Vol 415 ◽  
Author(s):  
W.D. Fan ◽  
K. Jagannadham ◽  
J. Narayan

ABSTRACTComposite diamond coatings on Si3N4 substrates have been developed to minimize stresses/strains and improve wear and adhesion properties. The coatings consist of a first layer of discontinuous diamond crystallites which are anchored to the Si3N4 substrate by a second interposing layer of TiC or TiN film. A top third layer of continuous diamond film is grown epitaxially on the first layer. The diamond films and TiC or TiN films were deposited using hot filament chemical vapor deposition and laser physical vapor deposition, respectively. The TiC and TiN films were examined by X-ray diffraction. The diamond films were characterized by scanning electron microscopy and Raman spectroscopy. Adhesion of the diamond coatings was investigated using overlap polishing with diamond paste, wear against Al-12.5%Si alloy, and pull-test. The results show that after introducing an interposing layer of TiC or TiN, adhesion of diamond coatings on Si3N4 substrates is improved significantly. After polishing test against diamond paste for 4 hours, only 30% of diamond was retained with single diamond coating while 80% of diamond was found with TiN composite diamond coating. The mechanism of improvement of adhesion is discussed.


2011 ◽  
Vol 1354 ◽  
Author(s):  
C. Smith ◽  
S. Budak ◽  
T. Jordan ◽  
J. Chacha ◽  
B. Chhay ◽  
...  

AbstractWe prepared samples by electron beam physical vapor deposition EB-PVD followed by ion bombardment. The samples were than characterized by photoluminescence (PL), x-ray photoelectron spectroscopy (XPS). PL was used to characterize the available energy states. XPS was used to determine the binding energies. The ML’s are comprised of 100 alternating layers of SiO2/SiO2+Cu.


2001 ◽  
Vol 699 ◽  
Author(s):  
Florentina Perjeru ◽  
Xuewen Bai ◽  
Martin E. Kordesch

AbstractWe report the electronic characterization of n-ScN in ScN-Si heterojunctions using Deep Level Transient Spectroscopy of electrically active deep levels. ScN material was grown by plasma assisted physical vapor deposition and by reactive sputtering on commercial p+ Si substrates. Deep level transient spectroscopy of the junction grown by plasma assisted physical vapor deposition shows the presence of an electronic trap with activation energy EC-ET= 0.51 eV. The trap has a higher concentration (1.2–1.6 1013cm−3) closer to the ScN/Si interface. Junctions grown by sputtering also have an electronic trap, situated at about EC-ET= 0.90 eV.


Sign in / Sign up

Export Citation Format

Share Document