Electrically Active Deep Levels in ScN

2001 ◽  
Vol 699 ◽  
Author(s):  
Florentina Perjeru ◽  
Xuewen Bai ◽  
Martin E. Kordesch

AbstractWe report the electronic characterization of n-ScN in ScN-Si heterojunctions using Deep Level Transient Spectroscopy of electrically active deep levels. ScN material was grown by plasma assisted physical vapor deposition and by reactive sputtering on commercial p+ Si substrates. Deep level transient spectroscopy of the junction grown by plasma assisted physical vapor deposition shows the presence of an electronic trap with activation energy EC-ET= 0.51 eV. The trap has a higher concentration (1.2–1.6 1013cm−3) closer to the ScN/Si interface. Junctions grown by sputtering also have an electronic trap, situated at about EC-ET= 0.90 eV.

2009 ◽  
Vol 615-617 ◽  
pp. 381-384 ◽  
Author(s):  
Masashi Kato ◽  
Kosuke Kito ◽  
Masaya Ichimura

We measured the temperature dependence of the electrical resistivity for two high-purity undoped 6H-SiC bulk wafers with resistivities of 1.5103 cm and 8.3108 cm at room temperature. We also characterized the deep levels affecting the semi-insulating property by current deep level transient spectroscopy (I-DLTS) and photo induced current level transient spectroscopy (PICTS) measurements. The activation energies of the resistivity were 0.11 eV and 0.59 eV for the samples with lower and higher resistivities, respectively. In I-DLTS and PICTS spectra, the sample with lower resistivity shows a donor level at Ec0.17 eV and two acceptor levels around Ec0.40 eV, while the sample with higher resistivity shows acceptor levels at Ec0.77 eV and Ev+0.46 eV. We calculated the temperature dependence of the resistivity with a model considering one donor level and one acceptor level based on parameters from I-DLTS peaks. We reproduced the experimental results only for the sample with lower resistivity. The acceptor level near the valence band needs to be considered to explain the resistivity for the sample with higher resistivity.


Author(s):  
Nataliya Mitina ◽  
Vladimir Krylov

The results of an experiment to determine the activation energy of a deep level in a gallium arsenide mesastructure, obtained by the method of capacitive deep levels transient spectroscopy with data processing according to the Oreshkin model and Lang model, are considered.


2001 ◽  
Vol 89 (2) ◽  
pp. 1172-1174 ◽  
Author(s):  
V. V. Ilchenko ◽  
S. D. Lin ◽  
C. P. Lee ◽  
O. V. Tretyak

Sign in / Sign up

Export Citation Format

Share Document