Iron and Iron-oxide on Silica Nanocomposites Prepared by the Sol-gel Method

2002 ◽  
Vol 17 (3) ◽  
pp. 590-596 ◽  
Author(s):  
G. Ennas ◽  
M. F. Casula ◽  
G. Piccaluga ◽  
S. Solinas ◽  
M. P. Morales ◽  
...  

γ–Fe2O3/SiO2 and Fe/SiO2 nanocomposites, with a Fe/Si molar ratio of 0.25, were prepared by the sol-gel method starting from ethanolic solutions of tetraethoxysilane and iron (III) nitrate. After gelation the xerogels were oxidated or reduced. Samples were investigated by transmission electron microscopy, x-ray diffraction, differential scanning calorimetry, and thermogravimetry. Magnetic properties of the samples were investigated at room temperature (RT) and at 77 K. Nanometric particles supported in the silica matrix were obtained in all cases. Bigger particles (10 nm) were obtained in the case of Fe/SiO2 nanocomposites with respect to the γ–Fe2O3/SiO2 samples (5–8 nm). A slight effect of sol dilution on particle size was observed only in the case of γ–Fe2O3/SiO2 nanocomposites. A superparamagnetic behavior was shown at RT only by γ–Fe2O3/SiO2 nanocomposites. Iron-based composites exhibited coercivity values higher than 700 Oe at RT.

Nanopages ◽  
2019 ◽  
pp. 1-11
Author(s):  
G. M. Taha ◽  
M. N. Rashed ◽  
M. S. El-Sadek ◽  
M. A. Moghazy

Abstract BiFeO3 (BFO) nanopowder was synthesized in a pure form via a sol- gel method based on glycol gel reaction. Effect of drying and preheating temperature on preventing other phases was studied. Many parameters were studied as calcination temperature and time & stirring temperature as well. The prepared powder was characterized by X-Ray Diffraction of powder (XRD) and Transmission Electron Microscope (TEM). High pure BiFeO3 was obtained by preheated process at 400 °C for 0.5 h and calcination at 600 °C for 0.5 h without any impurities compared to dry at110 °C.


2018 ◽  
Vol 41 (3-4) ◽  
pp. 53-62 ◽  
Author(s):  
Behnaz Lahijani ◽  
Kambiz Hedayati ◽  
Mojtaba Goodarzi

Abstract In this work, the PbFe12O19 nanoparticles were prepared by the simple and optimized precipitation method with different organic surfactants and capping agents. In the next step, the TiO2 nanoparticles were synthesized using the sol-gel method. At the final step, the PbFe12O19-TiO2 nanocomposites were prepared via the sol-gel method. The effect of the precipitating agent on the morphology and particle size of the products was investigated. The prepared products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Fourier transform infrared spectroscopy. The results obtained by the vibrating sample magnetometer show the magnetic properties of the ferrite nanostructures. The photocatalytic effect of the PbFe12O19-TiO2 nanocomposite on the elimination of the azo dyes (acid black, acid violet and acid blue) under ultraviolet light irradiation was evaluated. The results indicate that the prepared nanocomposites have acceptable magnetic and photocatalytic performance.


2004 ◽  
Vol 03 (06) ◽  
pp. 749-755 ◽  
Author(s):  
YING LI ◽  
SUO HON LIM ◽  
TIM WHITE

The properties influencing the photocatalytic activity of TiO 2 particles have been suggested to include the surface area, crystallinity, crystallite size and crystal structure. Therefore, manipulation of the microstructure of titania, especially of nanocrystalline powders, is very important in the preparative process. In this study, nanocrystalline TiO 2 powders with controlled particle size and phase composition were synthesized at low temperature (<80°C) by a modified sol–gel method. The effects of gelation temperature were systematically investigated. It was found that this parameter played a critical role in determining the crystallinity of single phase anatase. With increasing gelation temperature, the crystallinity of anatase improved initially and then decreased if the temperature was raised to 80°C. These nanomaterials were characterized comprehensively by powder X-ray diffraction (including Rietveld analysis), high-resolution transmission electron microscopy, DSC/TGA thermal analysis and UV–Vis spectrometry.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
L. Guerbous ◽  
A. Boukerika

Cerium trivalent (Ce3+) doped YAG nano-sized phosphors have been successfully synthesized by sol-gel method using different annealing temperatures. The samples have been characterized by X-ray diffraction (XRD), thermogravimetry (TG), differential scanning calorimetry (DSC) analysis, Fourier transform infrared (FTIR) spectroscopy, and steady photoluminescence (PL) spectroscopy. X-ray diffraction analysis indicates that the pure cubic phase YAG was formed and strongly depends on the cerium content and the annealing temperature. It was found that the grain size ranges from 30 to 58 nm depending on the calcination temperature. The YAG: Ce nanophosphors showed intense, green-yellow emission, corresponding to Ce3+5d1→2F5/2,2F7/2transitions and its photoluminescence excitation spectrum contains the two Ce3+4f1→5d1, 5d2bands. The crystal filed splitting energy levels positions 5d1and 5d2and the emission transitions blue shift with annealing temperatures have been discussed. It was found that the Ce3+4f1ground state position relative to valence band maximum of YAG host nanomaterial decreases with increasing the temperature.


2014 ◽  
Vol 881-883 ◽  
pp. 960-963 ◽  
Author(s):  
Ji Qi ◽  
Bin Zhao ◽  
Naisen Yu ◽  
Chen Niu ◽  
Guan Gran Sun

A new process was developed for synthesizing tungsten-doped vanadium dioxide VO2(M) from ammonium metavanadate. The process includes obtaining V2O5by pyrolysing NH4VO3, doping tungsten in V2O5by sol-gel method, and reducing V2O5to VO2(M) with hydrazine by hydrothermal method. X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) were applied to characterizing the product. The experimental results indicated that tungsten doped VO2(M) nanoparticles were successfully synthesized. The product VO2(M) presents mainly rod-like and block-like morphology. The phase transition temperature decreases with tungsten doped amount increasing, the phase transition takes place over the range from 36.23°C to 62.16°C and the largest enthalpy of the phase transition is 16.24J/g.


2011 ◽  
Vol 393-395 ◽  
pp. 1287-1290
Author(s):  
Min Wang ◽  
Qiong Liu ◽  
Qi Xing

The N-doped Cu11O2 (VO4)6 photocatalyst was prepared using the sol-gel method. Techniques of X-ray diffraction (XRD), scanning electron microscope (SEM) have been employed to characterize the as-synthesized materials. During liquid phase photocatalytic degradation of Methy lorange(MO) under the UV-light, the as-prepared N-doped Cu11O2 (VO4)6 exhibits higher activity than the pure Cu11O2 (VO4)6 without doped N. It found that the N-doped Cu11O2 (VO4)6 prepared with the molar ratio of citric acid to metal inons be 2:1, N/Cu molar ratio of 12%, pH=7 and calcinated under 500°C for 4 hours was pure triclinic phase. In this conditions, the sample had highest photocatalytic activity with the photodegradation rate was about 94.42% or so in 60min under 20W ultraviolet lamp.


2014 ◽  
Vol 977 ◽  
pp. 59-62 ◽  
Author(s):  
Jun Qing Tian ◽  
Hai Ying Shi ◽  
Wei Zheng

Fluorine-doped tin dioxide (FTO) nanocrystals were prepared with sol–gel method using SnCl4·5H2O and NH4F as precursor material. The FTO was characterized with X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Differential Thermal Analysis and Thermal Grativity (DTA-TG) and Infrared Radiation (IR) respectively. The electrical property was measured with Hall Effect Sensor. The result of XRD and SEM shows that FTO nanocrystal size is about 20 nm and the dimension of the grain is about 300 nm. IR spectrum analysis proves fluorine doping. The crystal phase transformation was discussed with DTA-TG curve. When the sintering temperature is 450°C, the sintering time is 60 min, and the molar ratio of F to Sn is 2:10, the sheet resistance of FTO film is 107Ω/□.


2001 ◽  
Vol 676 ◽  
Author(s):  
Carla Cannas ◽  
Mariano Casu ◽  
Roberta Licheri ◽  
Anna Musinu ◽  
Giorgio Piccaluga ◽  
...  

ABSTRACTA Y2O3-SiO2 nanocomposite doped with Eu3+ was obtained by a sol-gel method and characterized by X-ray diffraction, IR, 29Si NMR and laser-excited luminescence spectroscopy. It was found that small (2-3 nm) yttria nanoparticles are homogeneously dispersed in, and interacting with, the amorphous silica matrix. Luminescence spectroscopy indicates that the Eu3+ ion is preferentially located inside or at the surface of highly disordered Y2O3 nanoparticles. These luminescent nanocomposites form a class of materials which could find applications in the field of phosphors.


2013 ◽  
Vol 829 ◽  
pp. 544-548 ◽  
Author(s):  
Hossein Heydari ◽  
Rahim Naghizadeh ◽  
H.R. Samimbanihashemi ◽  
Maryam Hosseini-Zori

Hematite widely used since ancient times as a pigment but its chemical and thermal stability at high temperatures application is not enough. In this study, hematite nanoparticles were included into the zircon matrix and its stability was increased. Fe2O3 ZrSiO4 nanocomposite with Fe/Zr molar ratio of 5 to 30% was synthesized from Si and Zr alkoxides by sol-gel method. The products of the solgel method were calcined in the 1200°C /2.5 h. The structural and morphological characteristics of nanocomposite are determined by X-ray diffraction (XRD), simultaneous thermal analysis (STA) and scanning electron microscopy (SEM) investigations. The results indicate that formation of zircon promoted with iron addition. Finally, colorimetric parameters of the glazed ceramic samples were measured by the CIE colorimetric method. It was found that the samples withe 20% molar Fe has the highest red shade and is the best color according to the a* parameter.


2016 ◽  
Vol 680 ◽  
pp. 189-192
Author(s):  
Zhao Jun Liu ◽  
Kang Ning Sun ◽  
Ai Min Li ◽  
Xiao Ning Sun ◽  
Shu Pin Zhang

In this study, LiZn ferrites with different content of CNTs (1%-9%) were successfully prepared by a sol-gel method. X-ray diffraction pattern exhibit a relatively high crystallinity of the Li0.25Zn0.5Fe2.25O4/CNTs composite, and the CNTs still exist after acid treatment and subsequent heat treatment. Then the composite was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM), the results demonstrate that the particles are nearly spherical in shape and agglomerated to some extent. By a sol-gel method and subsequent calcination, the temperature of LiZn ferrites/CNTs temperature control biomaterials gradually increase and maintain at a certain temperature in the alternating magnetic field, so it can be a potential material used for hyperthermia applications.


Sign in / Sign up

Export Citation Format

Share Document