Plasticity size effects in nanoindentation

2004 ◽  
Vol 19 (1) ◽  
pp. 137-142 ◽  
Author(s):  
A.J. Bushby ◽  
D.J. Dunstan

In conventional continuum mechanics, the yield behavior of a material is size independent. However, in nanoindentation, plasticity size effects have been observed for many years, where a higher hardness is measured for smaller indentation size. In this paper we show that there was a size effect in the initiation of plasticity, by using spherical indenters with different radii, and that the length scale at which the size effect became significant depended on the mechanism of plastic deformation. For yield by densification (fused silica), there was no size effect in the nanoindentation regime. For phase transition (silicon), the length scale was of the order tens of nanometers. For materials that deform by dislocations (InGaAs/InP), the length scale was of the order a micrometer, to provide the space required for a dislocation to operate. We show that these size effects are the result of yield initiating over a finite volume and predict the length scale over which each mechanism should become significant.

2006 ◽  
Vol 976 ◽  
Author(s):  
XiaoDong Hou ◽  
T.T. Zhu ◽  
N. M. Jennett ◽  
A. J. Bushby

AbstractMethods to obtain tensile stress-strain properties of materials from a practically non-destructive indentation test are of great industrial interest. However, to do this successfully, indentation size effects must be accounted for. Many indentation size effects, such as strain gradient plasticity and micro-pillar experiments [1], show a size dependence proportional to the inverse square root of a length scale, in common with Hall-Petch behavior. Recently, however, the indentation size effect from small radius spherical indenters has been shown, for a range of fcc metals, not to follow a Hall-Petch-like relationship but to be proportional to the inverse cube root of indenter radius [2]. Here, we investigate these differences further and present results for the indentation size effect with spherical indenters on Cu samples that have been engineered to have different grain sizes. The important experimental control parameter of the relative size of the indentation compared to the grain size is also explored since the cross over from grains significantly smaller than the contact radius to grains significantly larger than the contact radius occurs at different length scales in each sample. A thorough understanding of the various length-scale effects in the different test methods (e.g. the indentation size effect and grain size effect in indentation), is essential if a relationship, robust enough for industrial application, is to be defined to obtain tensile properties from an essentially non-destructive indentation test.


2006 ◽  
Vol 21 (6) ◽  
pp. 1363-1374 ◽  
Author(s):  
Mengxi Tan

The work of indentation is investigated experimentally in this article. A method of using the elastic energy to extract the elastic modulus is proposed and verified. Two types of hardness related to the work of indentation are defined and examined: Hwtis defined as the total work required creating a unit volume of contact deformationand Hwp is defined as the plastic work required creating a unit volume of plastic deformation; experiments show that both hardness definitions are good choices for characterizing hardness. Several features that may provide significant insights in understanding indentation measurements are studied. These features mainly concern some scaling relationships in indentation measurements and the indentation size effects.


Author(s):  
F. Alisafaei ◽  
Seyed Hamid Reza Sanei ◽  
Chung-Souk Han

Length scale dependent deformation of polymers has been observed in different experiments including micro-beam bending and indentation tests. Here the length scale dependent deformation of polydimethylsiloxane is examined in indentation testing at length scales from microns down to hundreds of nanometers. Strong indentation size effects have been observed in these experiments which are rationalized with rotation gradients that can be related to Frank elasticity type molecular energies known from liquid crystal polymers. To support this notion additional experiments have been conducted where Berkovich and spherical indenter tips results have been compared with each other.


2006 ◽  
Vol 312 ◽  
pp. 363-368 ◽  
Author(s):  
Chun Sheng Lu ◽  
Yiu Wing Mai ◽  
Yao Gen Shen

Based on nanoindentation techniques, the evaluation of hardness of two nanostructured thin films, AlN and Ti-Al-N, is discussed. In the case of AlN films, the indentation size effect of hardness can be modeled using the concept of geometrically necessary dislocations, whereas in the case of Ti-Al-N films, the measured hardness increases exponentially as the indentation depth decreases. The results show that, as thin films approach superhard, dislocation-based plastic deformation is gradually replaced by grain-boundary mediated deformation.


1999 ◽  
Vol 14 (10) ◽  
pp. 3973-3982 ◽  
Author(s):  
K. Sangwal ◽  
P. Gorostiza ◽  
J. Servat ◽  
F. Sanz

The dependences of various nanoindentation parameters, such as depth of penetration d, indentation diameter a, deformation zone radius R, and height h of hills piled up around indents, on applied load were investigated for the initial (unrecovered) stage of indentation of the (100) cleavage faces of MgO crystals by square pyramidal Si tips for loads up to 10 μN using atomic force microscopy. The experimental data are analyzed using theories of elastic and plastic deformation. The results revealed that (i) a, R, and h linearly increase with d; (ii) the development of indentation size and deformation zone and the formation of hills are two different processes; (iii) the load dependence of nanohardness shows the normal indentation size effect (i.e., the hardness increases with a decrease in load); and (iv) there is an absence of plastic deformation involving the formation of slip lines around the indentations. It is found that Johnson's cavity model of elastic–plastic boundary satisfactorily explains the experimental data. The formation of hills around indentations is also consistent with a new model (i.e., indentation crater model) based on the concept of piling up of material of indentation cavity as hills.


2010 ◽  
Vol 25 (7) ◽  
pp. 1225-1229 ◽  
Author(s):  
Oliver Franke ◽  
Jonathan C. Trenkle ◽  
Christopher A. Schuh

The influence of temperature on the indentation size effect is explored experimentally. Copper is indented on a custom-built high-temperature nanoindenter at temperatures between ambient and 200 °C, in an inert atmosphere that precludes oxidation. Over this range of temperatures, the size effect is reduced considerably, suggesting that thermal activation plays a major role in determining the length scale for plasticity.


2015 ◽  
Vol 2015 ◽  
pp. 1-20 ◽  
Author(s):  
Farid Alisafaei ◽  
Chung-Souk Han

Various experimental studies have revealed size dependent deformation of materials at micro and submicron length scales. Among different experimental methods, nanoindentation testing is arguably the most commonly applied method of studying size effect in various materials where increases in the hardness with decreasing indentation depth are usually related to indentation size effects. Such indentation size effects have been observed in both metals and polymers. While the indentation size effects in metals are widely discussed in the literature and are commonly attributed to geometrically necessary dislocations, for polymer the experimental results are far sparser and there does not seem to be a common ground for their rationales. The indentation size effects of polymers are addressed in this paper, where their depth dependent deformation is reviewed along with the rationale provided in the literature.


2014 ◽  
Vol 129 (4) ◽  
pp. 180-183
Author(s):  
Lei Zhang ◽  
Richard C. Bradt

Abstract The Indentation Size Effect (ISE) in Fused Silica and Crystalline Quartz were measured by both Knoop and Vicker indenters and both exhibited a crossover for the different indenters at about the same indentation load. The crossover can be explained by the ratio of the (surface area/indentation volume) from the geometries of the two indenters.


2013 ◽  
Vol 586 ◽  
pp. 51-54
Author(s):  
Jaroslav Menčík ◽  
Martin Elstner

Indentation hardness of homogeneous materials should be constant. However, at very small depths, the apparent hardness often increases with decreasing imprint size. The paper discusses various cases of this indentation size effect in metals and ceramics and explains the extrinsic and intrinsic reasons.


2005 ◽  
Vol 881 ◽  
Author(s):  
Bo-Kuai Lai ◽  
Igor Kornev ◽  
Laurent Bellaiche ◽  
Greg Salamo

AbstractProperties and phase transition behaviors of ferroelectric thin films that are different from that of their bulk form is usually referred to as size effect. A first-principles-based scheme is used to investigate the effects of four important factors contributing to the size effects in epitaxial (001) BaTiO3 ultrathin films: misfit strain, existence of surface, film thickness, and electrical boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document