Highly sinter-active nanocrystalline RE2O3 (RE = Gd, Eu, Dy) by a combustion process, and role of oxidant-to-fuel ratio in preparing their different crystallographic modifications

2007 ◽  
Vol 22 (3) ◽  
pp. 587-594 ◽  
Author(s):  
V. Bedekar ◽  
S.V. Chavan ◽  
A.K. Tyagi

Highly sinter-active powders of RE2O3 [rare earth (RE) = Gd, Eu, Dy] have been prepared using the corresponding metal nitrates as the oxidants, and glycine and citric acid as the fuels. Two different oxidant-to-fuel ratios, namely stoichiometric ratio and fuel-deficient ratio were used to explore the possibility of preparing different crystallographic modifications. By a careful control of oxidant-to-fuel ratio, nanocrystalline Eu2O3 and Gd2O3 could be prepared in cubic (C-type) as well as monoclinic (B-type) modifications. However, the high-temperature monoclinic modification could not be obtained for Dy2O3 due to a very high C-to-B-type phase transition temperature. The crystallite size, surface area, and sintering behavior were also studied for powders prepared using different oxidant-to-fuel ratios, and the results showed a remarkable correlation between different fuel contents and powder properties. Some of these powders resulted in pellets of nearly theoretical density. The sintered microstructure was studied by scanning electron microscopy.

2004 ◽  
Vol 19 (11) ◽  
pp. 3181-3188 ◽  
Author(s):  
S.V. Chavan ◽  
A.K. Tyagi

The title compositions were prepared by the gel-combustion process using glycine as the fuel and the corresponding metal nitrates as oxidants. The powders after calcination at 600 °C were characterized by x-ray diffraction for phase identification. The lattice parameters were refined by least squares method for each of the title compounds. Sr0.09Ce0.91O1.91 could be prepared in situ, that is, without any further external heating at higher temperatures, whereas phase pure SrCeO3 and Sr2CeO4 could be prepared only after calcination at 950 °C for 3 h. Sr0.09Ce0.91O1.91 was prepared using three different oxidant-to-fuel ratios: the fuel-deficient ratio, the propellant chemistry (stoichiometric) ratio, and the fuel-excess ratio. The crystallite size as calculated by x-ray line broadening was found to be 13 nm, 20 nm, and 42 nm for the products from fuel-deficient, propellant, and fuel-excess ratios, respectively. It was found that the extreme fuel-deficient ratio of 1:0.5 failed to give phase pure Sr0.09Ce0.91O1.91. The transmission electron microscopy studies showed that majority of the particles were in the range 80–100 nm and 200–250 nm for SrCeO3 and Sr2CeO4, respectively. The compositional characterization was done by energy dispersive x-ray. A careful control of the oxidant-to-fuel ratio was found to be necessary to get the desired products, due to their different thermodynamic stabilities. Thus, the versatility of combustion process in synthesizing the products with different thermodynamic stabilities has been shown, which was hitherto unexplored.


Author(s):  
Douglas William Jones

Within the past 20 years, archaeobotanical research in the Eastern United States has documented an early agricultural complex before the dominance of the Mesoamerican domesticates (corn, beans, and squash) in late prehistoric and historic agricultural systems. This early agricultural complex consisted of domesticated plants such as Iva annua var.macrocarpa (Sumpweed or Marshelder), Hellanthus annuus (Sunflower) and Chenopodium berlandieri, (Goosefoot or Lasbsquarters), and heavily utilized plants such as Polygonum erectum (Erect Knotweed), Phalaris caroliniana (May grass), and Hordeum pusillum (Little Barley).Recent research involving the use of Scanning Electron Microscopy (SEM) specifically on Chenopodium has established diagnostic traits of wild and domesticated species seeds. This is important because carbonized or uncarbonized seeds are the most commonly recovered Chenopodium material from archaeological sites. The diagnostic seed traits assist archaeobotanists in identification of Chenopodium remains and provide a basis for evaluation of Chenopodium utilization in a culture's subsistence patterns. With the aid of SEM, an analysis of Chenopodium remains from three Late Prehistoric sites in Northwest Iowa (Blood Run [Oneota culture], Brewster [Mill Creek culture], and Chan-Ya-Ta [Mill Creek culture]) has been conducted to: 1) attempt seed identification to a species level, 2) evaluate the traits of the seeds for classification as either wild or domesticated, and 3) evaluate the role of Chenopodium utilization in both the Oneota and Mill Creek cultures.


Author(s):  
B.K. Cameron

THE PROPERTY to be discussed is a mixed sheep and cropping unit, situated ei ht a miles east of Ashburton and midway between the Ra aia and the Ashburton rivers. Average annual rainfall is 27 in., evenly spread, but there is very high summer evaporation and therefore frequent droughts. On average, the soil is below wilting point for 40 to 50 days each summer. Winters are cold with the soil temperature being below 48°F for about four months each year. The soil is a Lismore stony silt loam averaging 9 in. in depth over gravel.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 259-261
Author(s):  
Aamir Khan ◽  
Rajni K. Gurmule

Vasavaleha is one of the best medicine given for respiratory diseases. Corona viruses typically affect the respiratory system, causing symptoms such as coughing, fever and shortness of breath. It also affects host immune system of human body. Spreading rate of this disease is very high. Whole world is seeking for the treatment which can uproots this diseases. There in no vaccine available till date against this pandemic disease. Ayurveda mainly focuses on prevention of diseases alongwith its total cure. Rajyakshma Vyadhi is MadhyamMarga Roga as per Ayurveda. It shows many symptoms such as Kasa, Shwasa etc. By overall view of Covid 19, shows its resemblance with Rajyakshma Vyadhi described in Ayurveda. Vasavaleha is a Kalpa which is described in Rogadhikara of Rajyakshma. It shows Kasahara, Shwashara properties. It consists of Vasa, Pipalli, Madhu and Goghrita. These components shows actions like bronchodilation, antitussive effect and many more other actions. Pipalli shows important Rasayana effect. So in present review, we have tried to focus on role of Vasavaleha in the management of Covid 19. This can be used as preventive as well as adjuvant medication in treating Covid 19. There is need of further clinical research to rule of exact action of Vasavaleha against Covid 19.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2965
Author(s):  
Sandeep Agrawal ◽  
Nishant K. Singh ◽  
Rajeev Kumar Upadhyay ◽  
Gurminder Singh ◽  
Yashvir Singh ◽  
...  

In recent years, the engineering implications of carbon nanotubes (CNTs) have progressed enormously due to their versatile characteristics. In particular, the role of CNTs in improving the tribological performances of various engineering materials is well documented in the literature. In this work, an investigation has been conducted to study the tribological behaviour of CNTs filled with glass-reinforced polymer (GFRP) composites in dry sliding, oil-lubricated, and gaseous (argon) environments in comparison to unfilled GFRP composites. The tribological study has been conducted on hardened steel surfaces at different loading conditions. Further, the worn surfaces have been examined for a particular rate of wear. Field-emission scanning electron (FESEM) microscopy was used to observe wear behaviours. The results of this study explicitly demonstrate that adding CNTs to GFRP composites increases wear resistance while lowering friction coefficient in all sliding environments. This has also been due to the beneficial strengthening and self-lubrication properties caused by CNTs on GFRP composites, according to FESEM research.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4017
Author(s):  
Dorota Szwagierczak ◽  
Beata Synkiewicz-Musialska ◽  
Jan Kulawik ◽  
Norbert Pałka

New ceramic materials based on two copper borates, CuB2O4 and Cu3B2O6, were prepared via solid state synthesis and sintering, and characterized as promising candidates for low dielectric permittivity substrates for very high frequency circuits. The sintering behavior, composition, microstructure, and dielectric properties of the ceramics were investigated using a heating microscope, X-ray diffractometry, scanning electron microscopy, energy dispersive spectroscopy, and terahertz time domain spectroscopy. The studies revealed a low dielectric permittivity of 5.1–6.7 and low dielectric loss in the frequency range 0.14–0.7 THz. The copper borate-based materials, owing to a low sintering temperature of 900–960 °C, are suitable for LTCC (low temperature cofired ceramics) applications.


2012 ◽  
Vol 19 (06) ◽  
pp. 1250062 ◽  
Author(s):  
X. H. ZHANG ◽  
Y. L. YUE ◽  
H. T. WU

Boroaluminosilicate glasses containing La2O3 were prepared by the normal quenching method. The glass transition temperatures (Tg) were measured by differential scanning calorimetry (DSC). The structural role of RO was investigated by nuclear magnetic resonance (NMR). Chemical durability was evaluated by weight losses of glass samples after immersion in HC1 solution. High resolution scanning electron microscopy (HR-SEM) was used to examine the surface micrographs of corroded glass samples. The dielectric constant and tangent loss were measured in the frequency range 10–106 Hz. The results revealed that chemical durability and dielectric properties increased with increasing La2O3 content.


2007 ◽  
Vol 121 (10) ◽  
pp. 993-997 ◽  
Author(s):  
M Barakate ◽  
E Beckenham ◽  
J Curotta ◽  
M da Cruz

Introduction: The organisms that cause many device-related and other chronic infections actually grow in biofilms in or on these devices. We sought to examine the role of biofilm formation in chronic middle-ear ventilation tube infection.Case report: Scanning electron micrograph images are presented which demonstrate biofilm on a middle-ear ventilation tube removed from a five-year-old child's chronically discharging ear. A review of the relevant international literature explores the role of biofilms in chronic infection and discusses potential intervention strategies.Conclusion: Biofilms may be responsible for chronic middle-ear ventilation tube infection that resists treatment with conventional antibiotics.


Sign in / Sign up

Export Citation Format

Share Document