scholarly journals Dehydrogenation/rehydrogenation mechanism in aluminum destabilized lithium borohydride

2009 ◽  
Vol 24 (8) ◽  
pp. 2720-2727 ◽  
Author(s):  
Xuebin Yu ◽  
Guanglin Xia ◽  
Zaiping Guo ◽  
Huakun Liu

LiBH4/Al mixtures with various mol ratios were prepared by ball milling. The hydrogen storage properties of the mixtures were evaluated by differential scanning calorimetry/thermogravimetry analyses coupled with mass spectrometry measurements. The phase compositions and chemical state of elements for the LiBH4/Al mixtures before and after hydrogen desorption and absorption reactions were assessed via powder x-ray diffraction, infrared spectroscopy, and x-ray photoelectron spectroscopy. Dehydrogenation results revealed that LiBH4 could react with Al to form AlB2 and AlLi compounds with a two-step decomposition, resulting in improved dehydrogenation. The rehydrogenation experiments were investigated at 600 °C with various H2 pressure. It was found that intermediate hydride was formed firstly at a low H2 pressure of 30 atm, while LiBH4 could be reformed completely after increasing the pressure to 100 atm. Absorption/desorption cycle results showed that the dehydrogenation temperature increased and the hydrogen capacity degraded with the increase of cycle numbers.

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4828
Author(s):  
Isabel Llamas Jansa ◽  
Oliver Friedrichs ◽  
Maximilian Fichtner ◽  
Elisa Gil Bardají ◽  
Andreas Züttel ◽  
...  

The changes introduced by both ball milling and the addition of small amounts of TiF3 in the kinetics of the hydrogen desorption of three different Ca(BH4)2 polymorphs (α, β and γ) have been systematically investigated. The samples with different polymorphic contents, before and after the addition of TiF3, were characterized by powder X-ray diffraction and vibrational spectroscopy. The hydrogen desorption reaction pathways were monitored by differential scanning calorimetry. The hydrogen desorption of Ca(BH4)2 depends strongly on the amount of coexistent α, β and γ polymorphs as well as additional ball milling and added TiF3 to the sample. The addition of TiF3 increased the hydrogen desorption rate without significant dissociation of the fluoride. The combination of an α-Ca(BH4)2 rich sample with 10 mol% of TiF3 and 8 h of milling led to up to 27 °C decrease of the hydrogen desorption peak temperature.


2011 ◽  
Vol 1334 ◽  
Author(s):  
Nobuhiko Takeichi ◽  
Kenji Shida ◽  
Xiao Yang ◽  
Tetsuo Sakai

ABSTRACTNovel Mg-Zr-A (A=Na, Li and K) hydrides have been synthesized by the gigapascal hydrogen pressure method. Their crystal structures were analyzed based on synchrotron X-ray diffraction (XRD) patterns. In the Mg-Zr-H system, the Mg-Zr hydride with FCC structure was formed under 8 GPa and 873 K. In the case of Mg-Zr-Li and Mg-Zr-K systems, the quaternary hydrides were formed and these retained the same crystal structure, FCC structure, up to x = 1.0 While in the Mg-Zr-Na system, the quaternary hydrides were formed and these retained the FCC structure, up to x = 0.3. With the addition of 0.5 NaH, a hydride with the Ca7Ge type structure was formed instead of the FCC structure. The Mg-Zr-(Li, Na, K) hydrides can reversibly absorb and desorb hydrogen. The hydrogen desorption temperatures of those hydrides decrease with the increasing ionic radius of the alkali metal.


CORROSION ◽  
10.5006/3881 ◽  
2021 ◽  
Author(s):  
Zachary Karmiol ◽  
Dev Chidambaram

This work investigates the oxidation of a nickel based superalloy, namely Alloy X, in water at elevated temperatures: subcritical water at 261°C and 27 MPa, the transition between subcritical and supercritical water at 374°C and 27 MPa, and supercritical water at 380°C and 27 MPa for 100 hours. The morphology of the sample surfaces were studied using scanning electron microscopy coupled with focused ion beam milling, and the surface chemistry was investigated using X-ray diffraction, Raman spectroscopy, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy before and after exposure studies. Surfaces of all samples were identified to comprise of a ferrite spinel containing aluminum.


2013 ◽  
Vol 28 (2) ◽  
pp. 68-71 ◽  
Author(s):  
Thomas N. Blanton ◽  
Debasis Majumdar

In an effort to study an alternative approach to make graphene from graphene oxide (GO), exposure of GO to high-energy X-ray radiation has been performed. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) have been used to characterize GO before and after irradiation. Results indicate that GO exposed to high-energy radiation is converted to an amorphous carbon phase that is conductive.


2014 ◽  
Vol 32 (3) ◽  
pp. 385-390
Author(s):  
Aysel Kantürk Figen ◽  
Bilge Coşkuner ◽  
Sabriye Pişkin

AbstractIn the present study, hydrogen desorption properties of magnesium hydride (MgH2) synthesized from modified waste magnesium chips (WMC) were investigated. MgH2 was synthesized by hydrogenation of modified waste magnesium at 320 °C for 90 min under a pressure of 6 × 106 Pa. The modified waste magnesium was prepared by mixing waste magnesium with tetrahydrofuran (THF) and NaCl additions, applying mechanical milling. Next, it was investigated by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) techniques in order to characterize its structural properties. Hydrogen desorption properties were determined by differential scanning calorimetry (DSC) under nitrogen atmosphere at different heating rates (5, 10, and 15 °C/min). Doyle and Kissenger non-isothermal kinetic models were applied to calculate energy (Ea) values, which were found equal to 254.68 kJ/mol and 255.88 kJ/mol, respectively.


Clay Minerals ◽  
2008 ◽  
Vol 43 (2) ◽  
pp. 195-203 ◽  
Author(s):  
Y. F. Cai ◽  
J. Y. Xue

AbstractDesorption experiments performed on four Cu-adsorbed palygorskites suggest that the leached Cu2+ ion originates at the surface and/or net-like interstice of the palygorskite fibres. The leached fraction, calculated from the quantities of adsorbed Cu2+ before and after desorption, is <1%. This may indicate that the majority of Cu is in inaccessible structural sites. X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared (FTIR) spectroscopy and electron spin resonance (ESR) were used to determine the mineralogical character of the Cu-adsorbed palygorskite. Two photoelectron lines at 932.5 and/or 933.7 eV in the narrow scan Cu 2p3/2 spectra show that Cu adsorbed on the surface of palygorskite is in the Cu+ and Cu2+ state. The stretching vibrations of the octahedral cation shift ~3–5 cm–1 towards a greater wavenumber in the FTIR spectra of Cu-adsorbed palygorskite. It can be deduced that the Cu2+ is trapped in the channel of the palygorskite structure. The ESR spectra of the palygorskite give g values of 2.34, 2.12, 2.08 and 2.05, suggesting that some Cu ions cannot be reached by H+. These results confirm that Cu is adsorbed by palygorskite via three possible mechanisms: (1) the Cu is adsorbed onto the surface or in a net-like interstice, and its oxidation states are +1 and +2; (2) Cu forms a complex ion – [Cu(H2O)4]2+ or [Cu(H2O)6]2+, and is trapped in the channel; or (3) Cu enters into the hexagonal channel of the tetrahedral sites or the unoccupied octahedral sites of palygorskite.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2714
Author(s):  
Min Zuo ◽  
Boda Ren ◽  
Zihan Xia ◽  
Wenwen Ma ◽  
Yidan Lv ◽  
...  

In this article, the modification effects on Al–Mg2Si before and after heat treatment were investigated with Ca, Sb, and (Ca + Sb). In comparison with single Ca or Sb, the samples with composition modifiers (Ca + Sb) had the optimal microstructure. The sample with a molar ratio for Ca-to-Sb of 1:1 obtained relatively higher properties, for which the Brinell hardness values before and after heat treatment were remarkably increased by 31.74% and 28.93% in comparison with bare alloy. According to differential scanning calorimetry analysis (DSC), it was found that the nucleation behavior of the primary Mg2Si phase could be significantly improved by using chemical modifiers. Some white particles were found to be embedded in the center of Mg2Si phases, which were deduced to be Ca5Sb3 through X-ray diffraction (XRD) and field-emission scanning electron microscope (FESEM) analyses. Furthermore, Ca5Sb3 articles possess a rather low mismatch degree with Mg2Si particles based on Phase Transformation Crystallography Lab software (PTCLab) calculation, meaning that the efficient nucleation capability of Ca5Sb3 for Mg2Si particles could be estimated.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2548
Author(s):  
Vicente Espinosa-Solis ◽  
Yunia Verónica García-Tejeda ◽  
Everth Jimena Leal-Castañeda ◽  
Víctor Barrera-Figueroa

In this paper, we consider amaranth starch extracted from the seeds of Amaranthus hypochondriacus L. An amphiphilic character is conferred to the starch by a chemical modification, which involves an esterification by lauroyl chloride at three modification levels. The degree of substitution (DS) after the modification ranged from 0.06 to 1.16. X-ray photoelectron spectroscopy analysis confirmed the presence of fatty acyl chains on the surface of the esterified starches. The hydrophobicity of starches was confirmed by their adsorption isotherms, which showed a decrease in the moisture adsorption of lauroylated as DS increased. X-ray diffraction analysis revealed a higher crystallinity, which was observed in the two samples subjected to the highest levels of modification. A higher crystallinity is related to a higher gelatinization enthalpy. These results are in agreement with the thermal characterization obtained by differential scanning calorimetry (DSC). An inhibition of the retrogradation properties of lauroylated amaranth starches was also observed.


2007 ◽  
Vol 128 ◽  
pp. 47-52 ◽  
Author(s):  
R.A. Varin ◽  
Ch. Chiu ◽  
Zbigniew S. Wronski ◽  
Andrzej Calka

In this work oxidized and oxide-free amorphous boron (a-B) powder and elemental Mg were used in an attempt to directly synthesize the Mg(BH4)2 complex hydride by controlled reactive mechanical alloying (CRMA) under hydrogen in a magneto-mill up to 200h. The particle size was refined to the 100-200nm range. Nanocrystalline MgH2 (~6nm crystallite size) was formed within the particles when an oxidized a-B is used. In contrast, a mixture of MgB2 and an amorphous hydride MgHx was formed when an oxide-free a-B was used. Differential scanning calorimetry (DSC) test up to 500°C produced a single endothermic heat event at 357.7°C due to hydrogen desorption. In addition, desorption conducted in a Sieverts-type apparatus revealed ~1.4wt.% of hydrogen release. The X-ray diffraction pattern after DSC test of the 200h milled sample made with oxide-free boron showed the presence of MgB2.


2013 ◽  
Vol 20 (01) ◽  
pp. 1350006 ◽  
Author(s):  
PARTHASARATHI BERA ◽  
H. SEENIVASAN ◽  
K. S. RAJAM

Co–W alloy coatings were deposited with direct current (DC) and pulse current (PC) electrodeposition methods using gluconate bath at pH5 and characterized by X-ray diffraction, field emission scanning electron microscopy, atomic force microscopy, differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). DSC studies hint at the possibility of formation of metallic glasses. Detailed XPS studies of these alloy coatings have been carried out to compare elemental states and composition of Co and W in DC and PC electrodeposited alloys. DC-plated alloy has significant amount of Co and W metal along with their respective oxidized species. In contrast, mainly oxidized metals are present in the following layers of as-deposited coatings prepared with PC plating. Concentration of Co metal is observed to increase during sputtering, whereas there is no change in W6+ concentration. Microhardness measurement of all the Co–W coatings shows higher hardness compared to Co metal and 1:1 and 1:4 PC electrodeposited coatings show little higher hardness compared to 1:2 PC electrodeposited coating.


Sign in / Sign up

Export Citation Format

Share Document