Nanostructured TiO2 modified by perfluoropolyethers: Gas phase photocatalytic activity

2010 ◽  
Vol 25 (1) ◽  
pp. 96-103 ◽  
Author(s):  
Claudia L. Bianchi ◽  
Silvia Ardizzone ◽  
Giuseppe Cappelletti ◽  
Giuseppina Cerrato ◽  
Walter Navarrini ◽  
...  

A high-molecular-weight perfluoropolyether (PFPE-YR) and a perfluoropolyether containing ammonium phosphate (PFPE-F10) have been evaluated as fluorinated coating for high-surface-area titanium oxides. Coated nano-TiO2 shows hydrophobic properties and excellent buoyancy on water. In addition to photoactivity toward the degradation of toluene in gas phase, specific trial analyses have been completed to estimate the modified titanium oxide features. Brunauer–Emmett–Teller (BET) analysis for the surface area determination, ultraviolet-visible spectroscopy (UV-Vis) for the material electronic band gap, high-resolution transmission electron microscopy (HRTEM), x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) for the morphology, structure, and surface composition, respectively, and water contact angle and infrared (IR) analysis have been performed to estimate the wettability and stability of coated titanium.

1997 ◽  
Vol 11 (4) ◽  
pp. 388-394 ◽  
Author(s):  
H.C. Van Der Mei ◽  
H.J. Busscher

Physicochemical and structural properties of microbial cell surfaces play an important role in their adhesion to surfaces and are determined by the chemical composition of the outermost cell surface. Many traditional methods used to determine microbial cell wall composition require fractionation of the organisms and consequently do not yield information about the composition of the outermost cell surface. X-ray photoelectron spectroscopy (XPS) measures the elemental composition of the outermost cell surfaces of micro-organisms. The technique requires freeze-drying of the organisms, but, nevertheless, elemental surface concentration ratios of oral streptococcal cell surfaces with peritrichously arranged surface structures showed good relationships with physicochemical properties measured under physiological conditions, such as zeta potentials. Isoelectric points ap-peared to be governed by the relative abundance of oxygen- and nitrogen-containing groups on the cell surfaces. Also, the intrinsic microbial cell-surface hydrophobicity by water contact angles related to the cell-surface composition as by XPS and was highest for strains with an elevated isoelectric point. Inclusion of elemental surface compositions for tufted streptococcal strains caused deterioration of the relationships found. Interestingly, hierarchical cluster analysis on the basis of the elemental surface compositions revealed that, of 36 different streptococcal strains, only four S. rattus as well as nine S. mitis strains were located in distinct groups, well separated from the other streptococcal strains, which were all more or less mixed in one group.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1387 ◽  
Author(s):  
Rut Sanchis ◽  
Daniel Alonso-Domínguez ◽  
Ana Dejoz ◽  
María Pico ◽  
Inmaculada Álvarez-Serrano ◽  
...  

Iron oxides (FeOx) are non-toxic, non-expensive and environmentally friendly compounds, which makes them good candidates for many industrial applications, among them catalysis. In the present article five catalysts based on FeOx were synthesized by mild routes: hydrothermal in subcritical and supercritical conditions (Fe-HT, Few200, Few450) and solvothermal (Fe-ST1 and Fe-ST2). The catalytic activity of these catalysts was studied for the total oxidation of toluene using very demanding conditions with high space velocities and including water and CO2 in the feed. The samples were characterized by X-ray diffraction (XRD), scanning and high-resolution transmission electron microscopy (SEM and HRTEM), X-ray photoelectron spectroscopy (XPS) and nitrogen adsorption-desorption isotherms. It was observed that the most active catalyst was a cavity-containing porous sample prepared by a solvothermal method with a relatively high surface area (55 m2 g−1) and constituted by flower-like aggregates with open cavities at the catalyst surface. This catalyst displayed superior performance (100% of toluene conversion at 325 °C using highly demanding conditions) and this performance can be maintained for several catalytic cycles. Interestingly, the porous iron oxides present not only a higher catalytic activity than the non-porous but also a higher specific activity per surface area. The high activity of this catalyst has been related to the possible synergistic effect of compositional, structural and microstructural features emphasizing the role of the surface area, the crystalline phase present, and the properties of the surface.


Catalysts ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 273 ◽  
Author(s):  
Mati Rahman ◽  
Mingdeng Wei ◽  
Fengyan Xie ◽  
Matiullah Khan

Photoanode materials with optimized particle sizes, excellent surface area and dye loading capability are preferred in good-performance dye sensitized solar cells. Herein, we report on an efficient dye-sensitized mesoporous photoanode of Ti doped zinc oxide (Ti-ZnO) through a facile hydrothermal method. The crystallinity, morphology, surface area, optical and electrochemical properties of the Ti-ZnO were investigated using X-ray photoelectron spectroscopy, transmission electron microscopy and X-ray diffraction. It was observed that Ti-ZnO nanoparticles with a high surface area of 131.85 m2 g−1 and a controlled band gap, exhibited considerably increased light harvesting efficiency, dye loading capability, and achieved comparable solar cell performance at a typical nanocrystalline ZnO photoanode.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 192
Author(s):  
Seo-Hyeon Baek ◽  
Kyunghee Yun ◽  
Dong-Chang Kang ◽  
Hyejin An ◽  
Min Bum Park ◽  
...  

High surface area (>170 m2 g−1) molybdenum nitride was prepared by the temperature-programmed nitridation of α-MoO3 with pure ammonia. The process was optimized by adjusting the experimental variables: the reaction temperature, heating rate, and molar flow rate of ammonia. The physicochemical properties of the as-formed molybdenum nitride were characterized by X-ray diffraction, N2 sorption, transmission electron microscopy, temperature-programmed oxidation/reduction, and X-ray photoelectron spectroscopy. Of the experimental variables, the nitridation temperature was found to be the most critical parameter determining the surface area of the molybdenum nitride. When the prepared molybdenum nitride was exposed to air, the specific surface area rapidly decreased because of the partial oxidation of molybdenum nitride to molybdenum oxynitride. However, the surface area recovered to 90% the initial value after H2 treatment. The catalyst with the highest degree of nitridation showed the best catalytic activity, superior to that of unmodified α-MoO3, for the decomposition of ammonia because of its high surface area.


1992 ◽  
Vol 271 ◽  
Author(s):  
Peter W. Lednor ◽  
Rene De Ruiter ◽  
Kees A. Emeis

ABSTRACTHigh surface area silicon oxynitrides have been prepared by nitrida- tion of silica with ammonia. Characterization by Fourier-transform infrared spectroscopy has allowed quantitative determination of hydroxyl, amido and imido groups. Data obtained by X-ray photoelectron spectroscopy show that the nitrogen is well distributed in the surface of the materials.


2021 ◽  
Author(s):  
Elena Plaza Mayoral ◽  
Paula Sebastián Pascual ◽  
Kim Nicole Dalby ◽  
Kim Degn Jensen ◽  
Ib Chorkendorff ◽  
...  

In this work we present an electrodeposition method in a deep eutectic solvent (DES) to prepare bimetallic high surface area nanostructures of Cu and Au with tunable structure and composition. The metal electrodeposition performed in green choline chloride within a urea deep eutectic solvent allows us to tailor the size, morphology and elemental composition of the deposits. We combine electrochemical methods with scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDS) to characterize the electrodeposited nanostructured materials. We assess the increase of the electroactive surface area through the analysis of the lead underpotential deposition (UPD) on the prepared films. We observe a 5 to 15-fold increase of the active surface area compared to flat surfaces of polycrystalline Cu or Au. Our work reports, for the first time, a green route for the electrodeposition of Cu-Au bimetallic nanostructures in a deep eutectic solvent.


2021 ◽  
Author(s):  
Elena Plaza Mayoral ◽  
Paula Sebastián Pascual ◽  
Kim Nicole Dalby ◽  
Kim Degn Jensen ◽  
Ib Chorkendorff ◽  
...  

In this work we present an electrodeposition method in a deep eutectic solvent (DES) to prepare bimetallic high surface area nanostructures of Cu and Au with tunable structure and composition. The metal electrodeposition performed in green choline chloride within a urea deep eutectic solvent allows us to tailor the size, morphology and elemental composition of the deposits. We combine electrochemical methods with scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDS) to characterize the electrodeposited nanostructured materials. We assess the increase of the electroactive surface area through the analysis of the lead underpotential deposition (UPD) on the prepared films. We observe a 5 to 15-fold increase of the active surface area compared to flat surfaces of polycrystalline Cu or Au. Our work reports, for the first time, a green route for the electrodeposition of Cu-Au bimetallic nanostructures in a deep eutectic solvent.


2018 ◽  
Vol 7 (3) ◽  
pp. 241-247 ◽  
Author(s):  
Shou-Feng Xue ◽  
Wen-Yuan Wu ◽  
Xue Bian ◽  
Zhen-Feng Wang ◽  
Yong-Fu Wu

Abstract CeCl3 solution was used as a precursor to prepare CeO2 microspheres by ultrasonic spray pyrolysis (USP). This is a green process that allows the transformation from CeCl3 to CeO2 without consuming any precipitant. The prepared material was investigated through various analysis technologies, such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high resolution TEM (HRTEM), energy dispersive X-ray spectroscopy (EDS), N2 adsorption-desorption and X-ray photoelectron spectroscopy (XPS). The prepared sample was confirmed as high purity CeO2 microspheres, and two different microstructures were observed. The microsphere surface area was 86.5 m2/g according to the Brunauer-Emmett-Teller method. The microsphere diameter ranged from 0.09 μm to 3.86 μm and the microsphere surface was covered by numerous nanoparticles. The observed nanoparticles ranged in size from 19 nm to 200 nm as determined from FESEM and HRTEM images. The concentrations of Ce4+, Ce3+, residual chloride and oxygen vacancy in CeO2 were studied by relative sensitivity factors based on the XPS results. Finally, the data suggested the possible formation mechanism of the CeO2 microsphere structure.


2020 ◽  
Author(s):  
Jennifer A. Rudd ◽  
Ewa Kazimierska ◽  
Louise B. Hamdy ◽  
Odin Bain ◽  
Sunyhik Ahn ◽  
...  

The utilization of carbon dioxide is a major incentive for the growing field of carbon capture. Carbon dioxide could be an abundant building block to generate higher value products. Herein, we describe the use of porous copper electrodes to catalyze the reduction of carbon dioxide into higher value products such as ethylene, ethanol and, notably, propanol. For <i>n</i>-propanol production, faradaic efficiencies reach 4.93% at -0.83 V <i>vs</i> RHE, with a geometric partial current density of -1.85 mA/cm<sup>2</sup>. We have documented the performance of the catalyst in both pristine and urea-modified foams pre- and post-electrolysis. Before electrolysis, the copper electrode consisted of a mixture of cuboctahedra and dendrites. After 35-minute electrolysis, the cuboctahedra and dendrites have undergone structural rearrangement. Changes in the interaction of urea with the catalyst surface have also been observed. These transformations were characterized <i>ex-situ</i> using scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. We found that alterations in the morphology, crystallinity, and surface composition of the catalyst led to the deactivation of the copper foams.


Sign in / Sign up

Export Citation Format

Share Document