Toward high-mobility organic field-effect transistors: Control of molecular packing and large-area fabrication of single-crystal-based devices

MRS Bulletin ◽  
2013 ◽  
Vol 38 (1) ◽  
pp. 34-42 ◽  
Author(s):  
Hanying Li ◽  
Gaurav Giri ◽  
Jeffrey B.-H. Tok ◽  
Zhenan Bao

Abstract

2004 ◽  
Vol 126 (4) ◽  
pp. 984-985 ◽  
Author(s):  
Marta Mas-Torrent ◽  
Murat Durkut ◽  
Peter Hadley ◽  
Xavi Ribas ◽  
Concepció Rovira

2008 ◽  
Vol 80 (11) ◽  
pp. 2405-2423 ◽  
Author(s):  
Xike Gao ◽  
Wenfeng Qiu ◽  
Yunqi Liu ◽  
Gui Yu ◽  
Daoben Zhu

In recent years, tetrathiafulvalene (TTF) and its derivatives have been used as semiconducting materials for organic field-effect transistors (OFETs). In this review, we summarize the recent progress in the field of TTF-based OFETs. We introduce the structure and operation of OFETs, and focus on TTF derivatives used in OFETs. TTF derivatives used in OFETs can be divided into three parts by the semiconductor's morphology and the device fabrication technique: (1) TTF derivatives used for single-crystal OFETs, (2) TTF derivatives used for vacuum-deposited thin-film OFETs, and (3) TTF derivatives used for solution-processed thin-film OFETs. The single-crystal OFETs based on TTF derivatives were fabricated by drop-casting method and showed high performance, with the mobility up to 1.4 cm2/Vs. The vacuum-deposited thin-film OFETs based on TTF derivatives were well developed, some of which have shown high performance comparable to that of amorphous silicon, with good air-stability. Although the mobilities of most solution-processed OFETs based on TTF derivatives are limited at 10-2 cm2/Vs, the study on solution-processable TTF derivatives and their devices are promising, because of their low-cost, large-area-coverage virtues. The use of organic charge-transfer (OCT) compounds containing TTF or its derivatives in OFETs is also included in this review.


Nano Research ◽  
2017 ◽  
Vol 11 (2) ◽  
pp. 882-891 ◽  
Author(s):  
Liang Wang ◽  
Xiujuan Zhang ◽  
Gaole Dai ◽  
Wei Deng ◽  
Jiansheng Jie ◽  
...  

2020 ◽  
Vol 10 (19) ◽  
pp. 6656
Author(s):  
Stefano Lai ◽  
Giulia Casula ◽  
Pier Carlo Ricci ◽  
Piero Cosseddu ◽  
Annalisa Bonfiglio

The development of electronic devices with enhanced properties of transparency and conformability is of high interest for the development of novel applications in the field of bioelectronics and biomedical sensing. Here, a fabrication process for all organic Organic Field-Effect Transistors (OFETs) by means of large-area, cost-effective techniques such as inkjet printing and chemical vapor deposition is reported. The fabricated device can operate at low voltages (as high as 4 V) with ideal electronic characteristics, including low threshold voltage, relatively high mobility and low subthreshold voltages. The employment of organic materials such as Parylene C, PEDOT:PSS and 6,13-Bis(triisopropylsilylethynyl)pentacene (TIPS pentacene) helps to obtain highly transparent transistors, with a relative transmittance exceeding 80%. Interestingly enough, the proposed process can be reliably employed for OFET fabrication over different kind of substrates, ranging from transparent, flexible but relatively thick polyethylene terephthalate (PET) substrates to transparent, 700-nm-thick, compliant Parylene C films. OFETs fabricated on such sub-micrometrical substrates maintain their functionality after being transferred onto complex surfaces, such as human skin and wearable items. To this aim, the electrical and electromechanical stability of proposed devices will be discussed.


Sign in / Sign up

Export Citation Format

Share Document