High-Performance Piezoelectric Single Crystals of Complex Perovskite Solid Solutions

MRS Bulletin ◽  
2009 ◽  
Vol 34 (4) ◽  
pp. 277-283 ◽  
Author(s):  
Zuo-Guang Ye

AbstractRelaxor-based single crystals of complex perovskite solid solutions, Pb(Mg1/3Nb2/3)O3–PbTiO3 [PMN–PT] and Pb(Zn1/3Nb2/3)O3–PbTiO3 [PZN–PT], exhibit extraordinary piezoelectric performance, with extremely high piezoelectric coefficients, very large electromechanical coupling factors, and exceptionally high strain levels. These materials outperform the currently used Pb(Zr1–xTix)O3 [PZT] ceramics, making them the materials of choice for the next generation of electromechanical transducers for a broad range of advanced applications. In this article, recent major advances in the development of piezocrystals are reviewed in terms of crystal growth, piezoelectric properties, crystal chemistry, domain structure, and device applications.

2021 ◽  
Vol 11 (1) ◽  
pp. 57-65
Author(s):  
Cong Luo ◽  
Tomoaki Karaki ◽  
Zhuangkai Wang ◽  
Yiqin Sun ◽  
Yohachi Yamashita ◽  
...  

AbstractAfter field cooling (FC) alternating current poling (ACP), we investigated the dielectric and piezoelectric properties of [001]pc-oriented 0.24Pb(In1/2Nb1/2)O3 (PIN)-0.46Pb(Mg1/3Nb2/3)O3 (PMN)-0.30PbTiO3 (PT) (PIMN-0.30PT) single crystals (SCs), which were manufactured by continuous-feeding Bridgman (CF BM) within morphotropic phase boundary (MPB) region. By ACP with 4 kVrms/cm from 100 to 70 °C, the PIMN-0.30PT SC attained high dielectric permittivity (ε33T/ε0) of 8330, piezoelectric coefficient (d33) of 2750 pC/N, bar mode electromechanical coupling factor k33 of 0.96 with higher phase change temperature (Tpc) of 103 °C, and high Curie temperature (TC) of 180 °C. These values are the highest ever reported as PIMN-xPT SC system with Tpc > 100 °C. The enhancement of these properties is attributed to the induced low symmetry multi-phase supported by phase analysis. This work indicates that FC ACP is a smart and promising method to enhance piezoelectric properties of relaxor-PT ferroelectric SCs including PIMN-xPT, and provides a route to a wide range of piezoelectric device applications.


Author(s):  
Eldar Mehraly Gojayev ◽  
Gulshan Nuraddin Mammadova

In this work, single crystals of TlIn[Formula: see text]Ga[Formula: see text]Se2 solid solutions were grown by the methods of zone recrystallization, technologies for the manufacture of strain gauges based on them were developed and the tensoresistive properties of these phases were studied, the coefficient of strain sensitivity was determined by the static method depending on the temperature, the magnitude of mechanical deformation and optical illumination. Revealing that the single crystals have a high strain sensitivity coefficient, by the variation of the composition, quantity of mechanical deformation and the optical illumination, it is possible to control the phase coefficients investigated tensosensitivity.


2021 ◽  
Author(s):  
Cong Luo ◽  
Tomoaki Karaki ◽  
Zhuangkai Wang ◽  
Yiqin Sun ◽  
Yohachi Yamashita ◽  
...  

Abstract We investigated the dielectric and piezoelectric properties of [001]-oriented 0.24Pb(In1/2Nb1/2)O3-0.46Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 (PIMN-0.30PT) single crystals (SCs) manufactured by continuous-feeding Bridgman (CF BM) within morphotropic phase boundary (MPB) region after field cooling alternating current poling (FC ACP). By optimized the FC ACP conditions of 4 kVrms/cm from 100 to 70 oC, the PIMN-0.30PT SC process attained ultrahigh dielectric permittivity (εT 33/ε0) of 8330 and piezoelectric coefficient (d33) of 2750 pC/N, and bar mode electromechanical coupling factor k33 of 0.96 with higher phase change temperature (Tpc) of 103 oC, respectively. These values are the highest ever reported as PIMN-xPT system SCs with Tpc > 100 oC. The enhancement of these properties of the PIMN-0.30PT SC is attributed to the induced low symmetry multi-phase supported by phase analysis. This work indicates that FC ACP is a smart and promising method to enhance piezoelectric properties of relaxor-PT ferroelectric SCs including PIMNT, which provide a route to a wide range of piezoelectric device applications.


2020 ◽  
Vol 15 (4) ◽  
pp. 459-462
Author(s):  
Jae-Hoon Ji ◽  
Don-Jin Shin ◽  
Sang-Kwon Lee ◽  
Sang-Mo Koo ◽  
Jae-Geun Ha ◽  
...  

In this research, substitution effects of BiAlO3 with (Bi, Na)TiO3 piezoelectric ceramics was investigated for the sensors and actuators applications. (Bi,Na)TiO3 material has been employed for the piezoelectric devices applications because of their high piezoelectric charge constant, d33, of 88 pC/N, electromechanical coupling coefficient, kp, of 22% and inverse piezoelectric charge constant of 498 pm/V. As a piezoelectric material, (Bi, Na)TiO3 has perovskite structure with tetragonal basis. The improvement of piezoelectric and inverse piezoelectric properties is important for industrial device applications. Therefore, in this research, we have tried to increase functional and electrical properties of (Bi, Na)TiO3 piezoelectric materials by substituting BiAlO3 dopants. As a result, the piezoelectric constant was increased up to 140 pC/N, and the densification was increased up to 5.92 g/cm3 .


2012 ◽  
Vol 512-515 ◽  
pp. 1355-1358 ◽  
Author(s):  
Tao Sun ◽  
Ye Jing Dai ◽  
Hong Qiang Wang

The introduction of lithium ion into BNT-BKT-BT ceramics with sol-gel method allows the development of high-performance lead-free piezoelectric ceramics. Nanoscale precursor powders were synthesized through calcination of amorphous gels, and densified ceramics with single perovskite structure were prepared at a relatively low sintering temperature 1110 °C. Crystal grain growth was fully developed with the Li+ addition through scanning electron microscope observation. Enhanced electrical properties, piezoelectric constant d33~184 pC/N and planar electromechanical coupling factor kp~0.30, were obtained for the ceramics.


2020 ◽  
Vol 8 (17) ◽  
pp. 5795-5806
Author(s):  
Zenghui Liu ◽  
Yi Yuan ◽  
Zeng Luo ◽  
Hongyan Wan ◽  
Pan Gao ◽  
...  

Novel ferro-/piezoelectric solid solutions between bismuth-based perovskite and antiferroelectric material are designed and synthesized and their crystal structure, phase transitions, ferro-/piezoelectric properties and local polar structure are investigated.


Sign in / Sign up

Export Citation Format

Share Document