Noise Mitigation Techniques for Carbon Nanotube-Based Piezoresistive Sensor Systems

2011 ◽  
Vol 1303 ◽  
Author(s):  
Michael A. Cullinan ◽  
Martin L. Culpepper

ABSTRACTCarbon nanotube (CNT)-based piezoresistive strain sensors have the potential to outperform traditional silicon-based piezoresistors in MEMS devices due to their high strain sensitivity. However, the resolution of CNT-based piezoresistive sensors is currently limited by excessive 1/f or flicker noise. In this paper we will demonstrate several noise mitigation techniques that can be used to decrease noise in the CNT-based sensor system without reducing the sensor’s strain sensitivity. First, the CNTs were placed in a parallel resistor network to increase the total number of charge carriers in the sensor system. By carefully selecting the types of CNTs used in the sensor system and by correctly designing the system it is possible to reduce the noise in the sensor system without reducing sensitivity. The CNTs were also coated with aluminum oxide to help protect the CNTs from environmental variations. Finally, the CNTs were annealed to improve contact resistance and to remove adsorbates from the CNT sidewall. Overall, using these noise mitigation techniques it is possible to reduce the total noise in the sensor system by almost two orders of magnitude and increase the dynamic range of the sensors by 29 dB.

2013 ◽  
Vol 1 (1) ◽  
Author(s):  
Michael A. Cullinan ◽  
Martin L. Culpepper

Carbon nanotube (CNT)-based piezoresistive strain sensors have the potential to outperform traditional silicon-based piezoresistors in MEMS devices due to their high strain sensitivity. However, the resolution of CNT-based piezoresistive sensors is currently limited by excessive 1/f or flicker noise. In this paper, we will demonstrate several nanomanufacturing methods that can be used to decrease noise in the CNT-based sensor system without reducing the sensor's strain sensitivity. First, the CNTs were placed in a parallel resistor network to increase the total number of charge carriers in the sensor system. By carefully selecting the types of CNTs used in the sensor system and by correctly designing the system, it is possible to reduce the noise in the sensor system without reducing sensitivity. The CNTs were also coated with aluminum oxide to help protect the CNTs from environmental effects. Finally, the CNTs were annealed to improve contact resistance and to remove adsorbates from the CNT sidewall. The optimal annealing conditions were determined using a design-of-experiments (DOE). Overall, using these noise mitigation techniques it is possible to reduce the total noise in the sensor system by almost 3 orders of magnitude and increase the dynamic range of the sensors by 48 dB.


2015 ◽  
Vol 2 (1) ◽  
pp. 212 ◽  
Author(s):  
Wu Haiyun ◽  
Tadayoshi Muramatsu ◽  
Mutsuko Hirai ◽  
Kyoko Hibi ◽  
Huifeng Ren ◽  
...  

A novel label-free immunosensor for detecting steroid hormone was developed. The principle of the sensor system is based on differences in the electrochemical activity induced by an immunoreaction that depends on the levels of steroid hormone in the sample. A gold electrode functionalized with 3-mercaptopropionic acid (MPA) self- assembled monolayer was used to fabricate electrochemical immunosensor. In addition, single-wall carbon nanotube (SWCNT) was selected to expandthe dynamic range of the sensor. The sensor was immersed into a sample solution and measurements were determined by cyclic voltammetry. Each electrochemical measurement including sample immerse only took about 15min. In this study, we introduced an application of our sensor in detecting 17, 20β- dihydroxy-4-pregnen- 3-one (DHP). The immunosensor showed a specific response to DHP, and the oxidation peak current linearly decreased in the range of 7.8-500.0pg ml-1 (without SWCNT) and 15.6-50000.0pg ml-1 (with SWCNT). The sensor system was then applied to monitor DHP of goldfish (Carassiusauratus) and was compared with the levels of the same samples determined using ELISA as the convention method. Blood plasma of fish was collected every 3h after administering a DHP inducer. A good relationship (coefficient: 0.934) was observed between DHP levels determined by both methods. Keyword: Biosensor, Steroid hormone, Immunoassay, Fish, Single-walled carbon nanotube 


Author(s):  
Michael A. Cullinan ◽  
Robert M. Panas ◽  
Cody R. Daniel ◽  
Joshua B. Gafford ◽  
Martin L. Culpepper

Traditional microelectromechanical MEMS fabrications such photolithography and deep reactive ion etching (DRIE) are expensive and time consuming. This limits the types and designs of MEMS devices that can be produced cost effectively since in order to overcome the high startup costs and times associated with traditional MEMS fabrication techniques tens of thousands of each type of MEMS device must be produced and sold. In this paper, we will present a method for placing carbon nanotube (CNT) based piezoresistive sensors onto metallic flexural elements that are created via micromachining. This method reduces the fabrication time from over 3 months to less than 3 days. In addition, the fabrication cost is reduced form over $500 per device to less than $20 per device. This flexible, low cost fabrication method enables rapid prototyping of MEMS devices which is an important step in the design and development process for electromechanical systems. Also, the development of this type of low cost fabrication method will help to make low volume manufacturing of MEMS devices feasible from a cost prospective. In this fabrication method, a micromill is used to fabricate the flexure beams. Electron beam evaporation is then used to deposit (1) an insulating ceramic thin film layer and (2) metal traces on the flexure. A shadow mask is used to define the wire patterns. Either a tungsten wire or a focused ion beam (FIB) is used to define a 1–5 μm gap in the wire traces. Dielectrophoresis is then used to orient/position the CNT sensors across the gap. Finally, the structure is coated with a thin ceramic layer to protect the sensor and mitigate noise. When the flexure element is deflected, the CNTs strain which results in a measurable change in resistance. Several meso-scale test devices were produced using this fabrication method. The devices that were fabricated using a FIB to create the gap in the wire traces have the same strain sensitivity as devices fabricated using traditional cleanroom based techniques. However, the devices that were fabricated using the tungsten wire have a strain sensitivity that is almost 7 times lower than the devices fabricated using traditional cleanroom based fabrication techniques. This is because the gap size for the tungsten wire fabrication method is about an order of magnitude larger than for the FIB cut or lithography based gap fabrication methods. Therefore, the CNT are not able to stretch across the entire gap. This creates CNT-CNT junctions in the electrical pathway of the sensors which significantly increases the sensor resistance and decreases the strain sensitivity of the sensor. Overall, these results show that functional CNT-based piezoresistive MEMS sensors may be fabricated without conventional integrated circuit (IC) microfabrication technologies but that tight control over the gap size is needed in order to ensure that the sensor performance is not degraded.


Author(s):  
Liyan Yang ◽  
Jun Ma ◽  
Weibing Zhong ◽  
Qiongzhen Liu ◽  
Mu fang Li ◽  
...  

The fabric-based piezoresistive sensors have demonstrated great potentials in the application of human motion and health detection. However, the conductive polymers of the sensing units are easily influenced by high...


Author(s):  
Corey D. Hernandez ◽  
Thomas S. Gates ◽  
Seun K. Kahng

This paper presents recent results on research of achieving multifunctional structures utilizing Carbon Nanotube (CNT) yarns. The investigation centers on creating composite structures with CNT yarns to simultaneously achieve increases in mechanical strength and the ability to sense strain. The CNT yarns used in our experiments are of the single-ply and two-ply variety with the single-ply yarns having diameters on the order of 10–20 μm. The yarns are embedded in silicon rubber and polyurethane test specimens. Mechanical tests show an increase in modulus of elasticity, with an additional weight increase of far less than one-percent. Sensing characteristics of the yarns are investigated on stainless steel test beams in an electrical bridge configuration, and are observed to have a strain sensitivity of 0.7mV/V/1000 micro-strain. Also reported are measurements of the average strain distribution along the direction of the CNT yarns on square silicon rubber membranes.


2019 ◽  
Vol 279 ◽  
pp. 255-266 ◽  
Author(s):  
Alexandra Dudina ◽  
Florent Seichepine ◽  
Yihui Chen ◽  
Alexander Stettler ◽  
Andreas Hierlemann ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 284 ◽  
Author(s):  
Hyun-Seung Cho ◽  
Jin-Hee Yang ◽  
Jeong-Hwan Lee ◽  
Joo-Hyeon Lee

The purpose of this study was to investigate the effects of the shape and attachment position of stretchable textile piezoresistive sensors coated with single-walled carbon nanotubes on their performance in measuring the joint movements of children. The requirements for fabric motion sensors suitable for children are also identified. The child subjects were instructed to wear integrated clothing with sensors of different shapes (rectangular and boat-shaped), attachment positions (at the knee and elbow joints or 4 cm below the joints). The change in voltage caused by the elongation and contraction of the fabric sensors was measured for the flexion-extension motions of the arms and legs at 60°/s (three measurements of 10 repetitions each for the 60° and 90° angles, for a total of 60 repetitions). Their reliability was verified by analyzing the agreement between the fabric motion sensors and attached acceleration sensors. The experimental results showed that the fabric motion sensor that can measure children’s arm and leg motions most effectively is the rectangular-shaped sensor attached 4 cm below the joint. In this study, we developed a textile piezoresistive sensor suitable for measuring the joint motion of children, and analyzed the shape and attachment position of the sensor on clothing suitable for motion sensing. We showed that it is possible to sense joint motions of the human body by using flexible fabric sensors integrated into clothing.


2020 ◽  
Vol 389 ◽  
pp. 124112 ◽  
Author(s):  
K.A. Dubey ◽  
R.K. Mondal ◽  
Jitendra Kumar ◽  
J.S. Melo ◽  
Y.K. Bhardwaj

Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 185 ◽  
Author(s):  
Phillip Durdaut ◽  
Michael Höft ◽  
Jean-Michel Friedt ◽  
Enrico Rubiola

Surface acoustic wave (SAW) sensors in the form of two-port resonators or delay lines are widely used in various fields of application. The readout of such sensors is achieved by electronic systems operating either in an open-loop or in a closed-loop configuration. The mode of operation of the sensor system is usually chosen based on requirements like, e.g., bandwidth, dynamic range, linearity, costs, and immunity against environmental influences. Because the limit of detection (LOD) at the output of a sensor system is often one of the most important figures of merit, both readout structures, i.e., open-loop and closed-loop systems, are analyzed in terms of the minimum achievable LOD. Based on a comprehensive phase noise analysis of these structures for both resonant sensors and delay line sensors, expressions for the various limits of detection are derived. Under generally valid conditions, the equivalence of open-loop and closed-loop operation is shown for both types of sensors. These results are not only valid for SAW devices, but are also applicable to all kinds of phase-sensitive sensors.


Sign in / Sign up

Export Citation Format

Share Document