Correlation between Controllability of Reset Current and Electrostatic Energy Released from the Self Capacitance of Conducting Bridge Random Access Memory

2012 ◽  
Vol 1430 ◽  
Author(s):  
Kentaro Kinoshita ◽  
Shigeyuki Tsuruta ◽  
Sho Hasegawa ◽  
Takahiro Fukuhara ◽  
Satoru Kishida

ABSTRACTPhysical properties of filaments in Cu/HfO2/Pt conducting-bridge memory (CB-RAM) were investigated basing on direct observation by conducting atomic force microscopy (C-AFM) and energy dispersive X-ray spectroscopy (EDS), R-T characteristics until liquid nitrogen temperature, and I-V characteristics both in air and in vacuum. As a result, physical picture of filaments in Cu/HfO2/Pt structures was revealed. Filaments consist of Cu containing large residual resistance and the cross-sectional area of the filament, Sfila, was roughly proportional to set voltage, Vset, even when current compliance was kept constant. Interestingly, resistivities of filaments are same among all the filaments in different samples and are invariant even after repetitive switching that changes resistance of the filaments. Cu/HfO2/Pt obeyed the universal relation that reset current, Ireset, is proportional to the inverse of resistance in a low resistance state, 1/RLRS, which is known to be applicable to oxygen-migration-based resistive switching memories such as Pt/NiO/Pt. Considering the invariance of resistivity of the filament, this suggests the fact that Ireset is decided dominantly by Sfila. In addition, it was suggested that moisture is necessary for dissolution and migration of Cu to form filaments.

2021 ◽  
Vol 3 ◽  
Author(s):  
Mark Buckwell ◽  
Wing H. Ng ◽  
Daniel J. Mannion ◽  
Horatio R. J. Cox ◽  
Stephen Hudziak ◽  
...  

Resistive random-access memories, also known as memristors, whose resistance can be modulated by the electrically driven formation and disruption of conductive filaments within an insulator, are promising candidates for neuromorphic applications due to their scalability, low-power operation and diverse functional behaviors. However, understanding the dynamics of individual filaments, and the surrounding material, is challenging, owing to the typically very large cross-sectional areas of test devices relative to the nanometer scale of individual filaments. In the present work, conductive atomic force microscopy is used to study the evolution of conductivity at the nanoscale in a fully CMOS-compatible silicon suboxide thin film. Distinct filamentary plasticity and background conductivity enhancement are reported, suggesting that device behavior might be best described by composite core (filament) and shell (background conductivity) dynamics. Furthermore, constant current measurements demonstrate an interplay between filament formation and rupture, resulting in current-controlled voltage spiking in nanoscale regions, with an estimated optimal energy consumption of 25 attojoules per spike. This is very promising for extremely low-power neuromorphic computation and suggests that the dynamic behavior observed in larger devices should persist and improve as dimensions are scaled down.


1999 ◽  
Vol 75 (17) ◽  
pp. 2626-2628 ◽  
Author(s):  
A. V. Ankudinov ◽  
A. N. Titkov ◽  
T. V. Shubina ◽  
S. V. Ivanov ◽  
P. S. Kop’ev ◽  
...  

1995 ◽  
Vol 30 (3) ◽  
pp. 678-682 ◽  
Author(s):  
Hee Jeen Kim ◽  
Jae Sung Kim ◽  
Yong Kim ◽  
Moo Sung Kim ◽  
Suk-Ki Min

Author(s):  
Sudheer Neralla ◽  
Sergey Yarmolenko ◽  
Dhananjay Kumar ◽  
Devdas Pai ◽  
Jag Sankar

Alumina is a widely used ceramic material due to its high hardness, wear resistance and dielectric properties. The study of phase transformation and its correlation to the mechanical properties of alumina is essential. In this study, interfacial adhesion properties of alumina thin films are studied using cross-sectional nanoindentation (CSN) technique. Alumina thin films are deposited at 200 and 700 °C, on Si (100) substrates with a weak Silica interface, using pulsed laser deposition (PLD) process. Effect of annealing on the surface morphology of the thin films is studied using atomic force microscopy. Xray diffraction studies revealed that alumina thin films are amorphous in nature at 200 °C and polycrystalline with predominant gamma alumina phase at 700 °C.


2020 ◽  
Vol 1004 ◽  
pp. 414-420
Author(s):  
Junro Takahashi ◽  
Kotaro Kawaguchi ◽  
Kazuhiko Kusunoki ◽  
Tomoyuki Ueyama ◽  
Kazuhito Kamei

We have studied the microstructure of the growth surface of the 4H-SiC grown by the m-face solution growth. Atomic Force Microscopy (AFM) revealed the micro-striped morphology with the asperity of several nm in the band-like morphology region. The cross-sectional Transmission Electron Microscopy (XTEM) showed that the growth surface consisted of a bunch of nanofacets and vicinal surface. This peculiar morphology is totally different from that of conventional spiral growth on c-face, which can be closely related with the growth mechanism of the m-face solution growth.


2014 ◽  
Vol 609-610 ◽  
pp. 565-570 ◽  
Author(s):  
Hong Xia Li ◽  
Dong Dong Shen ◽  
Wei Qing Ke ◽  
Jun Hua Xi ◽  
Zhe Kong ◽  
...  

In this paper, ZnO thin films were prepared on ITO conductive glass by direct current magnetron sputtering and the Cu electrodes were evaporated on ZnO/ITO by electric beam evaporation to get transparent Cu/ZnO/ITO resistive random access memory. The crystal structure and surface morphology were investigated by X-ray diffraction and atomic force microscopy, respectively. The transmittance spectra of ZnO/ITO in the visible region were measured by UV-VIS spectroscopy. The resistive switching characteristics of the fabricated devices were investigated by the voltage sweeping method, which showed that the transparent Cu/ZnO/ITO device had good resistive switching characteristics.


2008 ◽  
Vol 381-382 ◽  
pp. 525-528 ◽  
Author(s):  
B.L. Wang ◽  
Han Huang ◽  
Jin Zou ◽  
Li Bo Zhou

Silicon (100) substrates machined by chemo-mechanical-grinding (CMG) and chemicalmechanical- polishing (CMP) were investigated using atomic force microscopy, cross-sectional transmission electron microscopy and nanoindentation. It was found that the substrate surface after CMG was slightly better than machined by CMP in terms of roughness. The transmission electron microscopy analysis showed that the CMG-generated subsurface was defect-free, but the CMP specimen had a crystalline layer of about 4 nm in thickness on the top of the silicon lattice as evidenced by the extra diffraction spots. Nanoindentation results indicated that there exists a slight difference in mechanical properties between the CMG and CMP machined substrates.


1997 ◽  
Vol 482 ◽  
Author(s):  
Y. Cho ◽  
S. Rouvimov ◽  
Y. Kim ◽  
Z. Liliental-Weber ◽  
E. R. Weber

AbstractThe incorporation of nitrogen into sapphire substrates during nitridation was studied by xray photoelectron spectroscopy (XPS). An increase in the intensity of nitrogen 1s peak in XPS was observed upon longer nitridation. The surface morphology of the substrates was characterized by atomic force microscopy (AFM). High resolution electron microscopy (HREM) was employed for structural analysis. The cross sectional TEM showed a thin layer of AlN buried between amorphous AlNxO1−x and sapphire. This is the first direct observation of AlN on sapphire. The TEM images show a deeper penetration depth of nitrogen into a longer nitridated sapphire.


Sign in / Sign up

Export Citation Format

Share Document