Realistic simulation of polycrystalline CIGS absorbers and experimental verification

2013 ◽  
Vol 1493 ◽  
pp. 153-160 ◽  
Author(s):  
C. Maragliano ◽  
M. Stefancich ◽  
S. Rampino ◽  
L. Colace

AbstractCu(InGa)Se2 solar cells modeling is challenging due to their complex electronic structure, to the presence of interface states between layer and grains and to the microcrystalline structure of the absorber. Here we present a ISE-TCAD based realistic absorber 3D model, with the specific objective to take into account, among several effects, these challenging aspects. The CdS/Cu(InGa)Se2 solar cell is modeled as an array of columnar microcells, connected in parallel, mimicking the polycrystalline nature of the absorber. The model optical and electrical parameters are optimized based on a review of available experimental material characterization and realization results. Simulation outcomes are compared with experimental data in order to validate the model.

2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Tchouadep Guy Serge ◽  
Zouma Bernard ◽  
Korgo Bruno ◽  
Soro Boubacar ◽  
Savadogo Mahamadi ◽  
...  

The aim of this work is to study the behaviour of a silicon solar cell under the irradiation of different fluences of high-energy proton radiation (10 MeV) and under constant multispectral illumination. Many theoretical et experimental studies of the effect of irradiation (proton, gamma, electron, etc.) on solar cells have been carried out. These studies point out the effect of irradiation on the behaviour of the solar cell electrical parameters but do not explain the causes of these effects. In our study, we explain fundamentally the causes of the effects of the irradiation on the solar cells. Taking into account the empirical formula of diffusion length under the effect of high-energy particle irradiation, we established new expressions of continuity equation, photocurrent density, photovoltage, and dynamic junction velocity. Based on these equations, we studied the behaviour of some electronic and electrical parameters under proton radiation. Theoretical results showed that the defects created by the irradiation change the carrier distribution and the carrier dynamic in the bulk of the base and then influence the solar cell electrical parameters (short-circuit current, open-circuit voltage, conversion efficiency). It appears also in this study that, at low fluence, junction dynamic velocity decreases due to the presence of tunnel defects. Obtained results could lead to improve the quality of the junction of a silicon solar cell.


Author(s):  
Benmessaoud Mohammed Tarik ◽  
Fatima Zohra Zerhouni ◽  
Amine Boudghene Stambouli ◽  
Mustapha Tioursi ◽  
Aouad M'harer

In this chapter, we propose to perform a numerical technique based on genetic algorithms (GAs) to identify the electrical parameters (Is, Iph, Rs, Rsh, and n) of photovoltaic (PV) solar cells and modules. The one diode type approach is used to model the I–V characteristic of the solar cell. To extract electrical parameters, the approach is formulated as optimization problem. The GAs approach was used as a numerical technique in order to overcome problems involved in the local minima in the case optimization criteria. Compared to other methods, we find that the GAs is a very efficient technique to estimate the electrical parameters of photovoltaic solar cells and modules. Compared with other parameter extraction techniques, based on statistical study, results indicate the consistency and uniformity of method in terms of the quality of final solutions. In parallel, the simulated data with the extracted parameters of method base with GAs are in very good agreement with the experimental data in all cases.


2016 ◽  
pp. 1371-1390
Author(s):  
Benmessaoud Mohammed Tarik ◽  
Fatima Zohra Zerhouni ◽  
Amine Boudghene Stambouli ◽  
Mustapha Tioursi ◽  
Aouad M'harer

In this chapter, we propose to perform a numerical technique based on genetic algorithms (GAs) to identify the electrical parameters (Is, Iph, Rs, Rsh, and n) of photovoltaic (PV) solar cells and modules. The one diode type approach is used to model the I–V characteristic of the solar cell. To extract electrical parameters, the approach is formulated as optimization problem. The GAs approach was used as a numerical technique in order to overcome problems involved in the local minima in the case optimization criteria. Compared to other methods, we find that the GAs is a very efficient technique to estimate the electrical parameters of photovoltaic solar cells and modules. Compared with other parameter extraction techniques, based on statistical study, results indicate the consistency and uniformity of method in terms of the quality of final solutions. In parallel, the simulated data with the extracted parameters of method base with GAs are in very good agreement with the experimental data in all cases.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 366 ◽  
Author(s):  
Małgorzata Musztyfaga-Staszuk ◽  
Damian Janicki ◽  
Piotr Panek

This work presents comparison results of the selected electrical parameters of silicon solar cells manufactured with silver front electrodes which were co-fired in an infrared belt furnace in the temperature range of 840–960 °C. The commercial paste (PV19B) was used for the metallization process. Electrical properties of a batch of solar cells fabricated in one cycle were investigated. Three methods were used, including measurement of the current-voltage characteristics (I-V), measurement of contacts’ resistivity using the transmission Line model method (TLM), and measurement of contacts’ resistivity using the potential difference method (PD). This work is focused on both the different metallization temperatures of co-firing of solar cells and measurements using the above-mentioned methods. It is shown that the solar cell parameters measured with three methods have different, but strongly correlated values. Moreover, the comparative analysis was performed of the investigations of the same photovoltaic solar cells using both the TLM method and independent research stands (including one non-commercial and two commercial ones) at three different scientific units. In the PD and TLM methods, the same calculation formulae are used. It can be stated, comparing methods I-V, PD, and TLM, that for each, different parameters are determined to assess the electrical properties of the solar cell.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1615
Author(s):  
Cindy X. Zhao ◽  
Ken K. Chin

The classic solar cell model assumes that the photo-generated current is a constant, independent of the cell’s output voltage. Experimental data of CdTe solar cells, however, show that the photocurrent collection efficiency decreases with the increase of the cell’s output voltage. In this work, we proposed a theoretical model for the CdTe thin-film cell, which assumes that the loss of photocurrent in the CdTe absorber is primarily due to the minority carrier recombination in the neutral region and at the back contact. By solving the neutral region’s diffusion equation, with proper boundary conditions, we have obtained the analytical expressions of the photocurrent collection efficiency and the cell’s J-V performance. Our theoretical results agree well with the experimental data. According to our theoretical model, the CdTe thin-film solar cell has an optimized p-doping level. A higher doping density may not be always good for a CdTe solar cell due to the reduced depletion width and decreased photocurrent at normal operation voltage, although the higher doping density can improve the open-circuit voltage by increasing built-in voltage.


2019 ◽  
Author(s):  
Matthew Morgan ◽  
Maryam Nazari ◽  
Thomas Pickl ◽  
J. Mikko Rautiainen ◽  
Heikki M. Tuononen ◽  
...  

The electrophilic borylation of 2,5-diarylpyrazines results in the formation of boron-nitrogen doped dihydroindeno[1,2-<i>b</i>]fluorene which can be synthesized via mildly air-sensitive techniques and the end products handled readily under atmosphereic conditions. Through transmetallation via diarylzinc reagents a series of derivatives were sythesized which show broad absorption profiles that highlight the versatility of this backbone to be used in organic solar cell devices. These compounds can be synthesized in large yields, in alow number of steps and functionalized at many stages along the way providing a large depth of possibilities. Exploratory device paramaters were studied and show PCE of 2%.


Author(s):  
M. Kasemann ◽  
L.M. Reindl ◽  
B. Michl ◽  
W. Warta ◽  
A. Schütt ◽  
...  

Abstract Conventional series resistance imaging methods require electrical contacts for current injection or extraction in order to generate lateral current flow in the solar cell. This paper presents a new method to generate lateral current flow in the solar cell without any electrical contacts. This reduces the sample handling complexity for inline application and allows for measurements on unfinished solar cell precursors.


2021 ◽  
Author(s):  
Song Fang ◽  
Bo Chen ◽  
Bangkai Gu ◽  
Linxing Meng ◽  
Hao Lu ◽  
...  

UV induced decomposition of perovskite material is one of main factors to severely destroy perovskite solar cells for instability. Here we report a UV stable perovskite solar cell with a...


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3275
Author(s):  
Devendra KC ◽  
Deb Kumar Shah ◽  
M. Shaheer Akhtar ◽  
Mira Park ◽  
Chong Yeal Kim ◽  
...  

This paper numerically explores the possibility of ultrathin layering and high efficiency of graphene as a back surface field (BSF) based on a CdTe solar cell by Personal computer one-dimensional (PC1D) simulation. CdTe solar cells have been characterized and studied by varying the carrier lifetime, doping concentration, thickness, and bandgap of the graphene layer. With simulation results, the highest short-circuit current (Isc = 2.09 A), power conversion efficiency (h = 15%), and quantum efficiency (QE ~ 85%) were achieved at a carrier lifetime of 1 × 103 ms and a doping concentration of 1 × 1017 cm−3 of graphene as a BSF layer-based CdTe solar cell. The thickness of the graphene BSF layer (1 mm) was proven the ultrathin, optimal, and obtainable for the fabrication of high-performance CdTe solar cells, confirming the suitability of graphene material as a BSF. This simulation confirmed that a CdTe solar cell with the proposed graphene as the BSF layer might be highly efficient with optimized parameters for fabrication.


Sign in / Sign up

Export Citation Format

Share Document