Facile Synthesis of Ag-Coated Cu2O Nanospheres for Improved Photocatalytic Activity

2014 ◽  
Vol 1641 ◽  
Author(s):  
Drew Hall ◽  
Sanjay Mishra ◽  
Anagh Bhaumik ◽  
Kartik Dr. Ghosh

ABSTRACTThe present study details facile synthesis of hollow Cu2O nanospheres decorated with Ag nanoparticles using a simple surfactant technique for enhanced photocatalytic activity. The morphology and structure is studied via XRD and SEM. Cu2O hollow nanospheres with a diameter of 500-800 nm were synthesized via Ostwald ripening using CuSO4 aqueous solution. The catalytic activity of Cu2O is studied in the presence of UV and visible light using Methyl Orange (MO) as a model pollutant. Ag decorated Cu2O particles showed a 49% increase in photocatalytic activity over the undecorated Cu2O. The improved photocatalytic activity is achieved by surface plasmon resonance effects in the silver nanoparticles, allowing utilization of the lower energy portion of the solar spectrum.

2017 ◽  
Vol 10 (03) ◽  
pp. 1750028 ◽  
Author(s):  
Yan Zhu ◽  
Xiaoxia Yan ◽  
Yuanxin Ge ◽  
Shumin Wang ◽  
Dongmei Deng ◽  
...  

A facile approach was developed to synthesize novel Roe-like TiO2 hollow nanospheres via a template-assisted self-assembly process. These TiO2 nanospheres possessing mesoporous cavity manifest significantly improved photocatalytic activity owing to the synergistic effects of increased charge separation, more efficient use of the light and specific surface area.


2016 ◽  
Vol 4 (7) ◽  
pp. 1208-1212 ◽  
Author(s):  
Bingxia Zhao ◽  
Peng Huang ◽  
Pengfei Rong ◽  
Yu Wang ◽  
Mengyu Gao ◽  
...  

Fluorescent/magnetic dual-functional CdMnS hollow nanospheres with bright tunable emission and strong MR signal were synthesized via a facile Ostwald-ripening process with promising applications in bioimaging.


2014 ◽  
Vol 703 ◽  
pp. 86-89
Author(s):  
Shu Rong Xiao ◽  
Bao Quan Huang ◽  
Qing Hua Chen ◽  
Hun Xue ◽  
Qing Rong Qian ◽  
...  

The photocatalytic activity of polycrystalline TiO2samples impregnated with dendritic zinc phthalocaynine was investigated using the rhodamine B (RhB) aqueous solution as a probe. The morphology and structure of TiO2/dendrimer phthalocyanine nanocomposite catalyst were characterized by X-ray diffraction (XRD) and UV-Vis spectra. Significant activity improvements of the TiO2/dendrimer phthalocyanine nanocomposite photocatalyst were observed possible in terms of lower loading amount, enhanced photo-reactivity under light irradiation, as well as chemical, and photochemical stability of the sensitizers.


2012 ◽  
Vol 271-272 ◽  
pp. 362-366
Author(s):  
Chun Li Wang ◽  
Yao Zhong ◽  
Yan Jun Xin

Titanium dioxide(TiO2) nanotube film electrodes were fabricated by an anodic oxidation process at different preparing conditions. The morphology and structure of the TNT film electrodes were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Photocatalytic activity of the TNT film electeodes was evaluated by the degradation of alachlor in aqueous solution under visible light irradiation. Results indicated TNT film electrode anodized at 20V had well-aligned and highly ordered nanotube arrays and possessed relatively higher photocatalytic activity. In addition, the TNT film electrodes calcined at 500°C for 2 h with the higher degree of crystallinity exhibited the higher photocatalytic activity than other samples calcined at 300°C and 800°C.


2018 ◽  
Vol 6 (1) ◽  
pp. 22-30
Author(s):  
C. Lalhriatpuia ◽  
◽  
Thanhming liana ◽  
K. Vanlaldinpuia

The photocatalytic activity of Nanopillars-TiO2 thin films was assessed in the degradation of Bromophenol blue (BPB) dye from aqueous solution under batch reactor operations. The thin films were characterized by the XRD, SEM and AFM analytical methods. BET specific surface area and pore sizes were also obtained. The XRD data showed anatase phase of TiO2 particles with average particle size of 25.4 and 21.9 nm, for S1 and S2 catalysts respectively. The SEM and AFM images indicated the catalyst composed with Nanosized pillars of TiO2, evenly distributed on the surface of the substrate. The average height of the pillars was found to be 180 and 40 nm respectively for the S1 and S2 catalyst. The BET specific surface area and pore sizes of S1 and S2 catalyst were found to be 5.217 and 1.420 m2/g and 7.77 and 4.16 nm respectively. The photocatalytic degradation of BPB using the UV light was studied at wide range of physico-chemical parametric studies to determine the mechanism of degradation as well as the practical applicability of the technique. The batch reactor operations were conducted at varied pH (pH 4.0 to 10.0), BPB initial concentration (1.0 to 20.0 mg/L) and presence of several interfering ions, i.e., cadmium nitrate, copper sulfate, zinc chloride, sodium chloride, sodium nitrate, sodium nitrite, glycine, oxalic acid and EDTA in the photocatalytic degradation of BPB. The maximum percent removal of BPB was observed at pH 6.0 and a low initial concentration of the pollutant highly favours the photocatalytic degradation using thin films. The presence of several interfering ions suppressed the photocatalytic activity of thin films to some extent. The time dependence photocatalytic degradation of BPB was demonstrated with the pseudo-first-order rate kinetics. Study was further extended with total organic carbon measurement using the TOC (Total Organic Carbon) analysis. This demonstrated an apparent mineralization of BPB from aqueous solutions.


2021 ◽  
Author(s):  
Miaomiao Zou ◽  
Li Feng ◽  
Xiaoyun Lin ◽  
Yongnian Ni

In this paper, a new Co3O4-Ni nano-composite modified glassy carbon electrode (Co3O4-NiNPs/GCE) was successfully constructed and used to detect glucose and hydrogen peroxide (H2O2). The morphology and structure of Co3O4...


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1808
Author(s):  
Yali Zhou ◽  
Zhenyao Han ◽  
Chunlin He ◽  
Qin Feng ◽  
Kaituo Wang ◽  
...  

Nanobubbles have many potential applications depending on their types. The long-term stability of different gas nanobubbles is necessary to be studied considering their applications. In the present study, five kinds of nanobubbles (N2, O2, Ar + 8%H2, air and CO2) in deionized water and a salt aqueous solution were prepared by the hydrodynamic cavitation method. The mean size and zeta potential of the nanobubbles were measured by a light scattering system, while the pH and Eh of the nanobubble suspensions were measured as a function of time. The nanobubble stability was predicted and discussed by the total potential energies between two bubbles by the extended Derjaguin–Landau–Verwey–Overbeek (DLVO) theory. The nanobubbles, except CO2, in deionized water showed a long-term stability for 60 days, while they were not stable in the 1 mM (milli mol/L) salt aqueous solution. During the 60 days, the bubble size gradually increased and decreased in deionized water. This size change was discussed by the Ostwald ripening effect coupled with the bubble interaction evaluated by the extended DLVO theory. On the other hand, CO2 nanobubbles in deionized water were not stable and disappeared after 5 days, while the CO2 nanobubbles in 1 mM of NaCl and CaCl2 aqueous solution became stable for 2 weeks. The floating and disappearing phenomena of nanobubbles were estimated and discussed by calculating the relationship between the terminal velocity of the floating bubble and bubble size.


Sign in / Sign up

Export Citation Format

Share Document