Photocatalysis Activity of TiO2-Based/Dendrimer Phthalocyanine Nanocomposite Photocatalyst

2014 ◽  
Vol 703 ◽  
pp. 86-89
Author(s):  
Shu Rong Xiao ◽  
Bao Quan Huang ◽  
Qing Hua Chen ◽  
Hun Xue ◽  
Qing Rong Qian ◽  
...  

The photocatalytic activity of polycrystalline TiO2samples impregnated with dendritic zinc phthalocaynine was investigated using the rhodamine B (RhB) aqueous solution as a probe. The morphology and structure of TiO2/dendrimer phthalocyanine nanocomposite catalyst were characterized by X-ray diffraction (XRD) and UV-Vis spectra. Significant activity improvements of the TiO2/dendrimer phthalocyanine nanocomposite photocatalyst were observed possible in terms of lower loading amount, enhanced photo-reactivity under light irradiation, as well as chemical, and photochemical stability of the sensitizers.

2012 ◽  
Vol 271-272 ◽  
pp. 362-366
Author(s):  
Chun Li Wang ◽  
Yao Zhong ◽  
Yan Jun Xin

Titanium dioxide(TiO2) nanotube film electrodes were fabricated by an anodic oxidation process at different preparing conditions. The morphology and structure of the TNT film electrodes were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Photocatalytic activity of the TNT film electeodes was evaluated by the degradation of alachlor in aqueous solution under visible light irradiation. Results indicated TNT film electrode anodized at 20V had well-aligned and highly ordered nanotube arrays and possessed relatively higher photocatalytic activity. In addition, the TNT film electrodes calcined at 500°C for 2 h with the higher degree of crystallinity exhibited the higher photocatalytic activity than other samples calcined at 300°C and 800°C.


Author(s):  
Nurul Sahida Hassan ◽  
Nurul Jamilah Roslani ◽  
Aishah Abdul Jalil ◽  
Sugeng Triwahyono ◽  
Nur Fatien Salleh ◽  
...  

In recent years, dyes are one of the major sources of the water contamination that lead to environmental problems. For instance, Rhodamine B (RhB) which was extensively used as a colorant in textile industries is toxic and carcinogenic. Among many techniques, photocatalytic degradation become the promising one to remove those dyes from industrial wastewater. Recently, graphene has shown outstanding performance in this application due to its intrinsic electron delocalisation which promotes electron transport between composite photocatalyst and pollutant molecules. While, copper oxide (CuO) is well-known has a lower bandgap energies compared to other semiconductors. Therefore, in this study, copper oxide supported on graphene (CuO/G) was prepared and its photocatalytic activity was tested on degradation of RhB. The catalysts were characterized by X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) Spectroscopy. The results showed that the interaction between copper and graphene support could enhance the photocatalytic activity. The 5 wt% CuO/G was found to give the highest degradation (95%) of 10 mg L-1 of RhB solution at pH 7 using 1 g L-1 catalyst after 4 hours under visible light irradiation. The photodegradation followed the pseudo first-order Langmuir-Hinshelwood kinetic model. This study demonstrated that the CuO/G has a potential to be used in photocatalytic degradation of various organic pollutants.


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1671 ◽  
Author(s):  
Weike Zhang ◽  
Yanrong Zhang ◽  
Kai Yang ◽  
Yanqing Yang ◽  
Jia Jia ◽  
...  

A silicon dioxide/carbon nano onions/titanium dioxide (SiO2/CNOs/TiO2) composite was synthesized by a simple sol-gel method and characterized by the methods of X-ray diffraction (XRD), scanning electronic microscope (SEM), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), Fourier transform infrared (FTIR), thermogravimetric analysis (TG), differential scanning calorimeter (DSC) and UV-Vis diffuse reflectance spectra (UV-Vis DRS). In this work, the photocatalytic activity of the SiO2/CNOs/TiO2 photocatalyst was assessed by testing the degradation rate of Rhodamine B (RhB) under visible light. The results indicated that the samples exhibited the best photocatalytic activity when the composite consisted of 3% CNOs and the optimum dosage of SiO2/CNOs/TiO2(3%) was 1.5 g/L as evidenced by the highest RhB degradation rate (96%). The SiO2/CNOs/TiO2 composite greatly improved the quantum efficiency of TiO2. This work provides a new option for the modification of subsequent nanocomposite oxide nanoparticles.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
H. Letifi ◽  
Y. Litaiem ◽  
D. Dridi ◽  
S. Ammar ◽  
R. Chtourou

In this paper, we have reported a novel photocatalytic study of vanadium-doped SnO2 nanoparticles (SnO2: V NPs) in rhodamine B degradation. These NPs have been prepared with vanadium concentrations varying from 0% to 4% via the coprecipitation method. Structural, morphological, and optical properties of the prepared nanoparticles have been investigated by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscope (TEM), and UV-Vis and photoluminescence (PL) spectroscopy. Structural properties showed that both undoped and SnO2: V NPs exhibited the tetragonal structure, and the average crystal size has been decreased from 20 nm to 10 nm with the increasing doping level of vanadium. Optical studies showed that the absorption edge of SnO2: V NPs showed a redshift with the increasing vanadium concentration. This redshift leads to the decrease in the optical band gap from 3.25 eV to 2.55 eV. A quenching in luminescence intensity has been observed in SnO2: V NPs, as compared to the undoped sample. Rhodamine B dye (RhB) has been used to study the photocatalytic degradation of all synthesized NPs. As compared to undoped SnO2 NPs, the photocatalytic activity of SnO2: V NPs has been improved. RhB dye was considerably degraded by 95% within 150 min over on the SnO2: V NPs.


2018 ◽  
Vol 238 ◽  
pp. 03007
Author(s):  
Xiquan Wang ◽  
Nan Zhang ◽  
Gao Wang

Bi2S3-sensitized BiFO3 (BFO) photocatalyst (Bi2S3/BFO) was successfully synthesized through a facile and environmental ion exchange method between BFO and Thiosurea (H2NCSNH2, TU). The photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and UV-vis diffuse reflection spectroscopy (DRS). The obtained Bi2S3/BFO composites showed excellent photocatalytic performance for decomposing Rhodamine B (RhB) compared with pure BFO under visible light irradiation (λ>400nm). 5% Bi2S3/BFO exhibited the highest photocatalytic activity and excessive amount of Bi2S3 would result in the decrease of photocatalytic activity of BFO. The mechanism of enhanced photocatalytic activity was proposed on the basis of the calculated energy band positions.


2012 ◽  
Vol 455-456 ◽  
pp. 110-114 ◽  
Author(s):  
Xuan Dong Li ◽  
Xi Jiang Han ◽  
Wen Ying Wang ◽  
Xiao Hong Liu ◽  
Yan Wang ◽  
...  

Nb-doped TiO2 powders with different concentrations of Nb have been synthesized by a sol-gel method and characterized by a series of technologies including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-vis spectroscopy. The photocatalytic activity of Nb-doped TiO2 is evaluated by degradation efficiency of methyl orange in aqueous solution. The results indicate that the photocatalytic activity of Nb-doped TiO2 synthesized with a Nb/Ti molar ratio of 5% is higher than that of TiO2 under the visible light.


2019 ◽  
Vol 10 (1) ◽  
pp. 7-11 ◽  
Author(s):  
Zhenzhao Pei ◽  
Pei Wang ◽  
Zhiguo Li

In this work, we report that ZnTiO3/TiO2 composites, which were synthesized by hydrothermal method possessed photocatalytic and potential spraying properties. The obtained ZnTiO3/TiO2 composites were characterized by scanning electron microscopy (SEM) and X-ray diffraction techniques (XRD). Photocatalytic activities of ZnTiO3/TiO2 composites were evaluated by using Rhodamine B (RhB) as a model pollutant under visible light irradiation. The experimental results showed that the as-prepared ZnTiO3 (2%)/TiO2 composite exhibited better photocatalytic activity than that of pure TiO2.


Author(s):  
Khusnul Afifah ◽  
Roy Andreas ◽  
Dadan Hermawan ◽  
Uyi Sulaeman

Tuning the morphology of Ag3PO4 photocatalysts with an elevated concentration of KH2PO4 have been successfully conducted. This photocatalyst was prepared by starting material of AgNO3 and KH2PO4.  The KH2PO4 aqueous solution with five concentrations of 0.10 M, 0.15 M, 0.30 M, 0.45 M, and 0.60 M was reacted with AgNO3 aqueous solution. The products were characterized using X-ray Diffraction (XRD), UV-Vis Diffuse Reflectance Spectroscopy (DRS), and Scanning Electron Microscopy (SEM). The concentration of KH2PO4 significantly affected the morphology, size, and crystallinity of catalyst. The morphology of Ag3PO4 may be tuned with the synthesis using an elevated concentration of KH2PO4. The sample with the synthesis using 0.15 M of KH2PO4 exhibited the excellent photocatalytic activity. The high photocatalytic activity was caused by the small size of mixed morphology of sphere and tetrahedron, high crystallinity and defect sites. Copyright © 2019 BCREC Group. All rights reserved 


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Mingjie Ma ◽  
Weijie Guo ◽  
Zhengpeng Yang ◽  
Shanxiu Huang ◽  
Guanyu Wang

TiO2/fine char (FC) photocatalyst was prepared via sol-gel method with tetrabutyl titanate as the precursor and FC as the carrier. The structural property of TiO2/FC photocatalyst was investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the photocatalytic activity of TiO2/FC was evaluated by photocatalytic degradation of rhodamine B (RhB) aqueous solution under UV light irradiation. The results showed that TiO2was successfully coated on the surface of FC, and the TiO2/FC photocatalyst had better photocatalytic efficiency and stability for degradation of RhB under UV light illumination as compared to that of the pure TiO2and FC. The study provided a novel way for the application of FC to the photocatalytic degradation of organic wastes.


2009 ◽  
Vol 2009 ◽  
pp. 1-7 ◽  
Author(s):  
Chun He ◽  
Mudar Abou Asi ◽  
Ya Xiong ◽  
Dong Shu ◽  
Xiangzhong Li

A series of Pt-TiO2films with nanocrystaline structure was prepared by a procedure of photodeposition and subsequent dip-coating. The Pt-TiO2films were characterized by X-ray diffraction, scanning electronic microscope, electrochemical characterization to examine the surface structure, chemical composition, and the photoelectrochemical properties. The photocatalytic activity of the Pt-TiO2films was evaluated in the photocatalytic (PC) and photoelectrocatalytic (PEC) degradation of formic acid in aqueous solution. Compared with aTiO2film, the efficiency of formic acid degradation using the Pt-TiO2films was significantly higher in both the PC and PEC processes. The enhancement is attributed to the action of Pt deposits on theTiO2surface, which play a key role by attracting conduction band photoelectrons. In the PEC process, the anodic bias externally applied on the illuminated Pt-TiO2films can further drive away the accumulated photoelectrons from the metal deposits and promote a process of interfacial charge transfer.


Sign in / Sign up

Export Citation Format

Share Document