Patch antennas utilizing semi-insulating SiC for monolithic integration of the antenna subsystem on a SiC chip

2014 ◽  
Vol 1693 ◽  
Author(s):  
Tutku Karacolak ◽  
Rooban V. K. G. Thirumalai ◽  
Erdem Topsakal ◽  
Yaroslav Koshka

ABSTRACTSemi-insulating (SI) silicon carbide (SiC) was evaluated as a candidate material for dielectric substrate for patch antennas suitable for monolithic antenna integration on a SiC semiconductor chip. Computer simulations of the return loss were conducted to design microstrip patch antennas operating at 10 GHz. The antennas were fabricated using SI 4H-SiC substrates, with Ti-Pt-Au stacks for ground planes and patches. A good agreement between the experimental results and simulation was obtained. The radiation performance of the designed SiC based patch antennas was as good as that normally achieved from antennas fabricated using conventional RF materials such as FR4 and Rogers. The antennas had the gain around 2 dBi at 10 GHz, which is consistent with the conventional antennas of a similar size.

2017 ◽  
Vol 2 (3) ◽  
pp. 365-368 ◽  
Author(s):  
Kawan F. Ahmed ◽  
Rawaz H. Abdullah

In this paper two rectangular microstrip patch antennas are designed to operate in and  bands, using Computer Simulation Technology (CST) Microwave Studio. The designed antenna can be used for industrial, scientific and medical (ISM) band applications. The RO4350B hydrocarbon ceramic laminates from ROGRES corporation substrate is chosen in the design of the dielectric substrate of the antennas. The designed antenna has low profile, low cost, easy fabrication and good isolation. The parameters such as return loss, voltage standing wave ratio (VSWR), antenna gain, radiation pattern has been simulated and analyzed.


2018 ◽  
Vol 1 (1) ◽  
pp. 11-14
Author(s):  
Suroj Burlakoti ◽  
Prakash Rai

In this paper, Microstrip patch antennas with rectangular and swastika shape of patch are designed and its performance parameters are compared with each other. Rectangular and Swastika shaped patch are considered in this paper with common rectangular ground plane. The antenna is simulated at 2.4 GHz using HFSS simulation software. This work mainly includes modification of antenna patch to improve the antenna parameters. The parameters of antenna such as Return loss, VSWR Bandwidth and radiation pattern are compared using simulation. The performance of Swastika shaped antenna was found to be better than rectangular shaped microstrip patch antenna with improved Return Loss, VSWR, Bandwidth and Radiation Pattern.


Selecting an appropriate substrate material for the design of microstrip patch antenna for various applications is a very important step in antenna design. This paper presents a work of various substrates materials used for the design of low cost inset feed rectangular microstrip antenna for WLAN, WiMax, LTE, C-band and X-band applications. The substrates used are FR-4 epoxy, foam, polyethylene terephthalate (PET) and polydimethylsiloxane (PDMS). The antennas were designed, optimized and simulated using HFSS 15.0. Return loss, voltage standing wave ratio and gain analysis is carried out for these antennas. The measurement of reflection coefficient of the fabricated antennas is done using Agilent PNA-L series vector network analyzer. The simulated and measured results are well in agreement. The analysis show that antenna with foam substrate offers the lowest return loss of - 41.28 dB. Larger bandwidth and gain of 4.38 dB is observed with PET substrate.


2019 ◽  
Vol 8 (4) ◽  
pp. 5078-5082

While the revolution in antenna engineering leads to the fast-growing communication systems, Microstrip Patch Antennas (MPA) have proven to be the most unconventional discovery in the epoch of miniaturization. This paper incorporates the designing, simulation, and analysis of rectangular & circular microstrip patch antennas. The resonating frequency of the proposed patch antennas is 9 GHz, lying in the X band region and are designed on Rogers RT/duroid 5880 material having dielectric constant 2.2, using Ansys HFSS software. The proposed MPAs were compared on the basis of five performance parameters (Return loss, Bandwidth, VSWR, Gain and HPBW). It was observed that rectangular MPA has a higher value of return loss, VSWR and HPBW than circular MPA. Whereas, circular MPA has greater bandwidth and gain than rectangular MPA. The proposed antennas can be used in radar, wireless and satellite applications.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2766
Author(s):  
Wazie M. Abdulkawi ◽  
Abdel Fattah A. Sheta ◽  
Ibrahim Elshafiey ◽  
Majeed A. Alkanhal

This paper presents novel low-cost single- and dual-band microstrip patch antennas. The proposed antennas are realized on a square microstrip patch etched symmetrically with four slots. The antenna is designed to have low cost and reduced size to use in Internet of things (IoT) applications. The antennas provide a reconfigurable architecture that allows operation in different wireless communication bands. The proposed structure can be adjusted to operate either in single band or in dual-band operation. Two prototypes are implemented and evaluated. The first structure works at a single resonance frequency (f1 = 2.4 GHz); however, the second configuration works at two resonance frequencies (f1 = 2.4 GHz and f2 = 2.8 GHz) within the same size. These antennas use a low-cost FR-4 dielectric substrate. The 2.4 GHz is allotted for the industrial, scientific, and medical (ISM) band, and the 2.8 GHz is allocated to verify the concept and can be adjusted to meet the user’s requirements. The measurement of the fabricated antennas closely matches the simulated results.


Electronics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 129
Author(s):  
Oscar Ossa-Molina ◽  
Francisco López-Giraldo

In this study, we developed an analytical model of slot-loaded rectangular microstrip patch antennas based on the simulation results by varying slot parameters. The dominant resonant frequency predicted by such a model is in strong agreement with the experimental results measured at several locations of slot-loaded rectangular microstrip patch antennas. The model enables a reliable and quick computation of the resonant frequency, which generally follows a harmonic behavior that nearly resembles the resonant frequency of a microstrip antenna without a slot, which can be related to a small change in the impedance caused by the slot position. Results showed a good agreement between simulations and measurements for all the slot positions. Mathematical analytic functions to describe the changes in specific characteristic parameters of the slot-loaded rectangular microstrip patch antennas are also included.


2021 ◽  
Vol 23 (07) ◽  
pp. 995-1005
Author(s):  
Nivedita Mishra ◽  
◽  
Dr. Saima Beg ◽  
Preeti Singh ◽  
◽  
...  

In today’s world, the requirement for lower-weight, low-cost, low-profile, and effective-use transmitters is growing by the day. For addressing these parameters in a variety of applications, microstrip patch antennas are more popular than other antennas. The main issue with these types of microstrip patch antennas is that they have a high return loss, VSWR, and bandwidth, but these issues can be rectified utilizing a design technique. The method of design was to use mirror image layouts, which was a simple and easy way to improve performance. The efficiency of a simple patch cannot be influenced by any single structure that lacks a mirror reflection. In this study, the two +-shaped constructions are used, and the results are in good agreement. In today’s world, these antennas have a variety of uses, including WLAN and s band applications. In the future, various frameworks will be used to improve the results that have been produced thus far.


2021 ◽  
Vol 11 (4) ◽  
pp. 7469-7476
Author(s):  
M. J. Hakeem ◽  
M. M. Nahas

Microstrip patch antennas are attractive for communication applications due to their small size, low cost, and easy fabrication. Regardless of the diverse usage of these antennas, their bandwidth and efficiency are still limited and need to be improved. Therefore, this paper aims to enhance the bandwidth and efficiency of a microstrip antenna by inserting a slot into various patch designs. Flame Retardant (FR4) material is used in the dielectric substrate and the antenna is fed by a microstrip line. Virtually, the antenna performance is attempted to be optimized through empirical investigations of feedline lengths, slot sizes and positions, and ground plane dimensions and locations. To achieve the results, the High Frequency Structure Simulator (HFSS) is used, and the paper concludes by showing that the antenna performance is enhanced by the slot, and the return loss is significantly reduced when the ground plane is moved to the front surface of the antenna.


Author(s):  
Omar A. Saraereh ◽  
Amer A. Al Saraira ◽  
Qais H. Alsafasfeh ◽  
Aodeh Arfoa

Sign in / Sign up

Export Citation Format

Share Document