scholarly journals Improving the Performance of a Microstrip Antenna by Adding a Slot into Different Patch Designs

2021 ◽  
Vol 11 (4) ◽  
pp. 7469-7476
Author(s):  
M. J. Hakeem ◽  
M. M. Nahas

Microstrip patch antennas are attractive for communication applications due to their small size, low cost, and easy fabrication. Regardless of the diverse usage of these antennas, their bandwidth and efficiency are still limited and need to be improved. Therefore, this paper aims to enhance the bandwidth and efficiency of a microstrip antenna by inserting a slot into various patch designs. Flame Retardant (FR4) material is used in the dielectric substrate and the antenna is fed by a microstrip line. Virtually, the antenna performance is attempted to be optimized through empirical investigations of feedline lengths, slot sizes and positions, and ground plane dimensions and locations. To achieve the results, the High Frequency Structure Simulator (HFSS) is used, and the paper concludes by showing that the antenna performance is enhanced by the slot, and the return loss is significantly reduced when the ground plane is moved to the front surface of the antenna.

2019 ◽  
Vol 9 (6) ◽  
pp. 4962-4967
Author(s):  
M. M. Nahas ◽  
M. Nahas

The microstrip patch antenna is used in various communication applications including cellular phones, satellites, missiles, and radars, due to its several attractive features such as small size and weight, low cost, and easy fabrication. The microstrip patch antenna consists of a top radiating patch, a bottom ground plane, and a dielectric substrate in between. The patch can have different shapes, the rectangular patch being the most commonly used. In practice, the microstrip antenna suffers from narrow bandwidth and low gain efficiency. This paper aims to enhance the bandwidth and efficiency of a rectangular-patch antenna using the High-Frequency Structure Simulator (HFSS). Initially different patch sizes and substrate materials are investigated and optimal antenna parameters are achieved. Then, the antenna performance is further enhanced by inserting single and double slot designs into the patch. Two cost-effective feeding methods are involved in the investigation. The antenna is designed to operate in the Super High Frequency (SHF) band.


Selecting an appropriate substrate material for the design of microstrip patch antenna for various applications is a very important step in antenna design. This paper presents a work of various substrates materials used for the design of low cost inset feed rectangular microstrip antenna for WLAN, WiMax, LTE, C-band and X-band applications. The substrates used are FR-4 epoxy, foam, polyethylene terephthalate (PET) and polydimethylsiloxane (PDMS). The antennas were designed, optimized and simulated using HFSS 15.0. Return loss, voltage standing wave ratio and gain analysis is carried out for these antennas. The measurement of reflection coefficient of the fabricated antennas is done using Agilent PNA-L series vector network analyzer. The simulated and measured results are well in agreement. The analysis show that antenna with foam substrate offers the lowest return loss of - 41.28 dB. Larger bandwidth and gain of 4.38 dB is observed with PET substrate.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2766
Author(s):  
Wazie M. Abdulkawi ◽  
Abdel Fattah A. Sheta ◽  
Ibrahim Elshafiey ◽  
Majeed A. Alkanhal

This paper presents novel low-cost single- and dual-band microstrip patch antennas. The proposed antennas are realized on a square microstrip patch etched symmetrically with four slots. The antenna is designed to have low cost and reduced size to use in Internet of things (IoT) applications. The antennas provide a reconfigurable architecture that allows operation in different wireless communication bands. The proposed structure can be adjusted to operate either in single band or in dual-band operation. Two prototypes are implemented and evaluated. The first structure works at a single resonance frequency (f1 = 2.4 GHz); however, the second configuration works at two resonance frequencies (f1 = 2.4 GHz and f2 = 2.8 GHz) within the same size. These antennas use a low-cost FR-4 dielectric substrate. The 2.4 GHz is allotted for the industrial, scientific, and medical (ISM) band, and the 2.8 GHz is allocated to verify the concept and can be adjusted to meet the user’s requirements. The measurement of the fabricated antennas closely matches the simulated results.


In wireless communication era, we need the antennas with low profile, light weight, planar but can meet the characteristics of non-planar structures, with ease of fabrication, flexibility in terms of electromagnetic parameters like radiation pattern, gain, impedance, polarization etc. Microstrip patch antennas, which come at low cost, size, good performance, ease of installation and easy integration to circuits, high efficiency, are suitable in that context. The Principle of slot is used on the patch which decreases the radius of the circular patch antenna, so as to reduce the size. In this work various Ircular microstrip patch antenna arrays are intended for the application of WLAN and Wi-Max at 2.4GHz for the improvement of gain. Single microstrip patch antenna and planar arrays of 1x2 and 2x2 ircular microstrip patch antennas are designed using strip line feeding technique and simulated on FR4 substrate. The planar antenna arrays are simulated using the High Frequency Structure Simulator (HFSS) software version v17.2 and the parameters like gain, return loss, Bandwidth and VSWR are evaluated at 2.4GHz frequency and the same are presented.


2017 ◽  
Vol 2 (3) ◽  
pp. 365-368 ◽  
Author(s):  
Kawan F. Ahmed ◽  
Rawaz H. Abdullah

In this paper two rectangular microstrip patch antennas are designed to operate in and  bands, using Computer Simulation Technology (CST) Microwave Studio. The designed antenna can be used for industrial, scientific and medical (ISM) band applications. The RO4350B hydrocarbon ceramic laminates from ROGRES corporation substrate is chosen in the design of the dielectric substrate of the antennas. The designed antenna has low profile, low cost, easy fabrication and good isolation. The parameters such as return loss, voltage standing wave ratio (VSWR), antenna gain, radiation pattern has been simulated and analyzed.


2017 ◽  
Vol 5 (2) ◽  
Author(s):  
Saurabh Chandra ◽  
Pranaw Kumar ◽  
Jibendu Sekhar Roy

Bluetooth is a short distance unlicensed wireless communication technology operating at 2.4 GHz band and primarily used for data transfer between portable devices. In this paper, small size microstrip patch antennas, loaded by symmetric and asymmetric T-shaped slots are designed and a comparative study of their performance at Bluetooth frequency band is presented. High frequency structure simulator (HFSS) software is used for antenna simulation. Improved bandwidth, uniform radiation pattern and good gain of the antenna are achieved using asymmetric T-slot microstrip antenna compared to symmetric T-slot microstrip antenna. The dimension of asymmetric T-slot microstrip antenna is 75% less than the symmetric T-slot microstrip antenna. Performance of the antennas, through parametric studies, related to the dimensions of the symmetric and asymmetric T-slots, is also presented.  


Author(s):  
Mousaab M. Nahas ◽  

Microstrip patch antenna is attractive for various applications due to its easy fabrication, low cost and small size. It simply comprises of a radiating patch and ground plane that are separated by a dielectric substrate. However, the resonance bandwidth of the microstrip antenna is still an issue that needs to be considered in research. This paper aims to enhance the bandwidth of a microstrip antenna or introduce more resonant frequencies within the Super High Frequency (SHF) band. The paper demonstrates empirical results for circular-shaped patch antenna using the High Frequency Structure Simulator (HFSS). It begins by investigating different patch sizes and substrate materials, so that an optimal preliminary design is introduced. Then, different slot shapes are inserted into the patch for significant enhancement of the resonance characteristics. As a result, new ultra-wideband (UWB) antenna designs are presented with bandwidth results reaching 15.5 GHz within the C, X, Ku and K bands. Also, new multiband antenna designs are presented with improved reflection valleys in the Ku, K and Ka bands.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Sanchai Eardprab ◽  
Chuwong Phongcharoenpanich ◽  
Danai Torrungrueng

The proposed antenna is a circular microstrip structure excited by four feeds and suspended with artificial magnetic conductors (AMCs). The multifeed circular microstrip antennas can generate a high circularly polarized performance by using a different feed arrangement. AMC structures with a square, circular, or octagonal patch on a unit cell are designed and applied to circular microstrip patch antennas for the enhancement of antenna performance. It is found that simulated results of the proposed antenna are well suited. The properties of wide beamwidth with good axial ratio can be achieved when applying the proposed AMC structures to circular microstrip antennas. The antenna prototype was fabricated to validate simulated results.


2018 ◽  
Vol 1 (1) ◽  
pp. 11-14
Author(s):  
Suroj Burlakoti ◽  
Prakash Rai

In this paper, Microstrip patch antennas with rectangular and swastika shape of patch are designed and its performance parameters are compared with each other. Rectangular and Swastika shaped patch are considered in this paper with common rectangular ground plane. The antenna is simulated at 2.4 GHz using HFSS simulation software. This work mainly includes modification of antenna patch to improve the antenna parameters. The parameters of antenna such as Return loss, VSWR Bandwidth and radiation pattern are compared using simulation. The performance of Swastika shaped antenna was found to be better than rectangular shaped microstrip patch antenna with improved Return Loss, VSWR, Bandwidth and Radiation Pattern.


2014 ◽  
Vol 1693 ◽  
Author(s):  
Tutku Karacolak ◽  
Rooban V. K. G. Thirumalai ◽  
Erdem Topsakal ◽  
Yaroslav Koshka

ABSTRACTSemi-insulating (SI) silicon carbide (SiC) was evaluated as a candidate material for dielectric substrate for patch antennas suitable for monolithic antenna integration on a SiC semiconductor chip. Computer simulations of the return loss were conducted to design microstrip patch antennas operating at 10 GHz. The antennas were fabricated using SI 4H-SiC substrates, with Ti-Pt-Au stacks for ground planes and patches. A good agreement between the experimental results and simulation was obtained. The radiation performance of the designed SiC based patch antennas was as good as that normally achieved from antennas fabricated using conventional RF materials such as FR4 and Rogers. The antennas had the gain around 2 dBi at 10 GHz, which is consistent with the conventional antennas of a similar size.


Sign in / Sign up

Export Citation Format

Share Document