scholarly journals Design And Development of Inset Feed Microstrip Patch Antennas using Various Substrates

Selecting an appropriate substrate material for the design of microstrip patch antenna for various applications is a very important step in antenna design. This paper presents a work of various substrates materials used for the design of low cost inset feed rectangular microstrip antenna for WLAN, WiMax, LTE, C-band and X-band applications. The substrates used are FR-4 epoxy, foam, polyethylene terephthalate (PET) and polydimethylsiloxane (PDMS). The antennas were designed, optimized and simulated using HFSS 15.0. Return loss, voltage standing wave ratio and gain analysis is carried out for these antennas. The measurement of reflection coefficient of the fabricated antennas is done using Agilent PNA-L series vector network analyzer. The simulated and measured results are well in agreement. The analysis show that antenna with foam substrate offers the lowest return loss of - 41.28 dB. Larger bandwidth and gain of 4.38 dB is observed with PET substrate.

2019 ◽  
Vol 8 (4) ◽  
pp. 5078-5082

While the revolution in antenna engineering leads to the fast-growing communication systems, Microstrip Patch Antennas (MPA) have proven to be the most unconventional discovery in the epoch of miniaturization. This paper incorporates the designing, simulation, and analysis of rectangular & circular microstrip patch antennas. The resonating frequency of the proposed patch antennas is 9 GHz, lying in the X band region and are designed on Rogers RT/duroid 5880 material having dielectric constant 2.2, using Ansys HFSS software. The proposed MPAs were compared on the basis of five performance parameters (Return loss, Bandwidth, VSWR, Gain and HPBW). It was observed that rectangular MPA has a higher value of return loss, VSWR and HPBW than circular MPA. Whereas, circular MPA has greater bandwidth and gain than rectangular MPA. The proposed antennas can be used in radar, wireless and satellite applications.


2017 ◽  
Vol 2 (3) ◽  
pp. 365-368 ◽  
Author(s):  
Kawan F. Ahmed ◽  
Rawaz H. Abdullah

In this paper two rectangular microstrip patch antennas are designed to operate in and  bands, using Computer Simulation Technology (CST) Microwave Studio. The designed antenna can be used for industrial, scientific and medical (ISM) band applications. The RO4350B hydrocarbon ceramic laminates from ROGRES corporation substrate is chosen in the design of the dielectric substrate of the antennas. The designed antenna has low profile, low cost, easy fabrication and good isolation. The parameters such as return loss, voltage standing wave ratio (VSWR), antenna gain, radiation pattern has been simulated and analyzed.


2021 ◽  
Vol 11 (4) ◽  
pp. 7469-7476
Author(s):  
M. J. Hakeem ◽  
M. M. Nahas

Microstrip patch antennas are attractive for communication applications due to their small size, low cost, and easy fabrication. Regardless of the diverse usage of these antennas, their bandwidth and efficiency are still limited and need to be improved. Therefore, this paper aims to enhance the bandwidth and efficiency of a microstrip antenna by inserting a slot into various patch designs. Flame Retardant (FR4) material is used in the dielectric substrate and the antenna is fed by a microstrip line. Virtually, the antenna performance is attempted to be optimized through empirical investigations of feedline lengths, slot sizes and positions, and ground plane dimensions and locations. To achieve the results, the High Frequency Structure Simulator (HFSS) is used, and the paper concludes by showing that the antenna performance is enhanced by the slot, and the return loss is significantly reduced when the ground plane is moved to the front surface of the antenna.


2018 ◽  
Vol 1 (1) ◽  
pp. 11-14
Author(s):  
Suroj Burlakoti ◽  
Prakash Rai

In this paper, Microstrip patch antennas with rectangular and swastika shape of patch are designed and its performance parameters are compared with each other. Rectangular and Swastika shaped patch are considered in this paper with common rectangular ground plane. The antenna is simulated at 2.4 GHz using HFSS simulation software. This work mainly includes modification of antenna patch to improve the antenna parameters. The parameters of antenna such as Return loss, VSWR Bandwidth and radiation pattern are compared using simulation. The performance of Swastika shaped antenna was found to be better than rectangular shaped microstrip patch antenna with improved Return Loss, VSWR, Bandwidth and Radiation Pattern.


2014 ◽  
Vol 1693 ◽  
Author(s):  
Tutku Karacolak ◽  
Rooban V. K. G. Thirumalai ◽  
Erdem Topsakal ◽  
Yaroslav Koshka

ABSTRACTSemi-insulating (SI) silicon carbide (SiC) was evaluated as a candidate material for dielectric substrate for patch antennas suitable for monolithic antenna integration on a SiC semiconductor chip. Computer simulations of the return loss were conducted to design microstrip patch antennas operating at 10 GHz. The antennas were fabricated using SI 4H-SiC substrates, with Ti-Pt-Au stacks for ground planes and patches. A good agreement between the experimental results and simulation was obtained. The radiation performance of the designed SiC based patch antennas was as good as that normally achieved from antennas fabricated using conventional RF materials such as FR4 and Rogers. The antennas had the gain around 2 dBi at 10 GHz, which is consistent with the conventional antennas of a similar size.


Author(s):  
Dr. N. Srinivasa Rao

The microstrip antenna required for higher frequency application is to be light in weight, easy to fabricate and small in size. As the applications in S-band and Ku-band are increasing with the increase in technology the requirement for higher data rate so the proposed work is to design a 24GHz (ka band) rectangular microstrip antenna with stripline feeding, return loss to be less than -20dB and VSWR less than 0.5. The substrate is chosen to be RT/duroid 5880 with relative permeability 2.2. it is capable of covering satellite application, telemetry. HFSS software tool is used to design the antenna.


This paper propose the design of microstrip antenna which is used in cellular communication application especially at LTE network. The antenna was printed using FR-4 substrate material with dielectric constant of εr =4.4 and thickness of h = 1.6 mm. The overall dimension of the antenna is 135mm x 32 mm x 1.6 mm with 50 Ω impedance. This antenna operates between 400 MHz to 900 MHz for return loss of less than -10 dB. The simulation results suggest that the antenna gain is 4.725 dB with omni-directional radiation pattern. The antenna is designed to operate in the 2800 MHz, 4100-6200 MHz, and 8.85 GHz 10.00GHz, frequency bands. The characterization of the antenna in free-space as well as in the proximity of the user hand is presented. The results confirm the excellent performance of the proposed diversity antenna.


Author(s):  
Kali Krishna Giri ◽  
Raj Kumar Singh ◽  
Kumari Mamata ◽  
Ajeet Kumar Shrivastava

Modern communication system is based on wideband communication. A wideband antenna is designed in such a way that it will receive a wide range of frequencies. Microwave frequency spectrum is classified as ranging from 1GHz to 100GHz and this range is divided into a number of frequency bands. These bands are defined as L Band, S Band, C Band, X Band etc. To fulfil the demands of many users patch antenna is designed in these bands. Among different types of antenna, Microstrip Patch Antenna is most popular in wireless communication system. Microstrip patch Antennas have many advantages over other familiar antennas because microstrip patch antennas are of low profile, low cost, low volume, light weight. Low efficiency, low gain and narrow bandwidth of patch antenna create major challenge to a designer. Slots are created on patch for preparing antenna forwideband applications. In this paper, we have surveyed upon various types of Microstrip Patch Antenna, feeding techniques, design equation Substrate Characteristics, Simulation tools etc.


Author(s):  
Shraddha Pandey ◽  
Pankaj Vyas

In recent time, world have seen a rapid growth in wireless communication. Development in antenna from single band to dual band and multi band had made the antenna system more compact. A frequency reconfigurable microstrip antenna using a PIN diode for multiband operation is using many application and hot research area. In this paper, reconfigurable microstrip patch antennas and their types like frequency, polarization, radiation pattern and gain are described.


Author(s):  
Pushpinder Singh ◽  
Gaurav Monga

Microstrip patch antenna is a compact antenna which suffers the limitations of poor gain and reduction in radiation pattern. To reduce the resonance frequency of microstrip antenna increases the length of surface current with help of cutting slots in the patch. In this paper, a comparison of four Microstrip antennas with unequal length of rectangular slots is proposed. The microstrip antennas having rectangular shaped ground plane and FR4-epoxy substrate with relative permittivity 4.4, relative permeability 1 and dielectric loss tangent 0.02 with an overall size of 100×100×5 mm3. The performance of antennas is compared with slots in the patch and the effects of rectangular slots using operating frequency of 8 to 12 GHz are presented. The design simulate and analyze on FEM based HFSSv11 and this helps to compute VSWR, return loss,  gain, radiation efficiency and 3D polar plot of the proposed microstrip antenna. The proposed configuration gives broadside gain of more than 8 dBi and VSWR (>2) over entire range in simulated results.


Sign in / Sign up

Export Citation Format

Share Document