N-type semiconducting perylene diimide based molecules for organic solar cells

2015 ◽  
Vol 1733 ◽  
Author(s):  
D. Kotowski ◽  
S. Luzzati ◽  
E. Kozma ◽  
M. Catellani

ABSTRACTCore substituted perylene diimides (PDIs) are promising candidates as non-fullerene acceptor materials for organic solar cells. The functionalization of PDIs in the bay positions using chemical groups with different electron donating abilities and with steric hindrance is a versatile tool to modify both the optoelectronic properties and the morphology in the solid state.Herein we present two new PDI based molecules having bulky aromatic substituents linked into the bay positions: PDI-SF with spirobifluorene group and PDI-BSF with bithienyl-spirobifluorene moieties. The high steric hindrance of spirobifluorene reduce the tendency to form aggregates that has been identified as a limiting factor for the photovoltaic performances in PDI based solar cells.The PDI molecules were tested as electron acceptors in bulk heterojunction solar cells with P3HT as electron donor. Power conversion efficiencies (PCE) of 1.58% and 1.18% were obtained for PDI-SF and PDI-BSF devices.

2013 ◽  
Vol 4 ◽  
pp. 680-689 ◽  
Author(s):  
Gisela L Schulz ◽  
Marta Urdanpilleta ◽  
Roland Fitzner ◽  
Eduard Brier ◽  
Elena Mena-Osteritz ◽  
...  

The optimization of solution-processed organic bulk-heterojunction solar cells with the acceptor-substituted quinquethiophene DCV5T-Bu 4 as donor in conjunction with PC61BM as acceptor is described. Power conversion efficiencies up to 3.0% and external quantum efficiencies up to 40% were obtained through the use of 1-chloronaphthalene as solvent additive in the fabrication of the photovoltaic devices. Furthermore, atomic force microscopy investigations of the photoactive layer gave insight into the distribution of donor and acceptor within the blend. The unique combination of solubility and thermal stability of DCV5T-Bu 4 also allows for fabrication of organic solar cells by vacuum deposition. Thus, we were able to perform a rare comparison of the device characteristics of the solution-processed DCV5T-Bu 4 :PC61BM solar cell with its vacuum-processed DCV5T-Bu 4 :C60 counterpart. Interestingly in this case, the efficiencies of the small-molecule organic solar cells prepared by using solution techniques are approaching those fabricated by using vacuum technology. This result is significant as vacuum-processed devices typically display much better performances in photovoltaic cells.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Hardeep Singh Gill ◽  
Lian Li ◽  
Haizhou Ren ◽  
Ravi Mosurkal ◽  
Jayant Kumar

The effect of nanoimprinted structures on the performance of organic bulk heterojunction solar cells was investigated. The nanostructures were formed over the active layer employing the soft lithographic technique. The measured incident photon-to-current efficiency revealed that the nanostructured morphology over the active layer can efficiently enhance both light harvesting and charge carrier collection due to improvement of the absorption of incident light and the buried nanostructured cathode, respectively. The devices prepared with the imprinted nanostructures exhibited significantly higher power conversion efficiencies as compared to those of the control cells.


2017 ◽  
Vol 5 (38) ◽  
pp. 9920-9928 ◽  
Author(s):  
Duško Popović ◽  
Ibrahim Ata ◽  
Johannes Krantz ◽  
Sebastian Lucas ◽  
Mika Lindén ◽  
...  

A series of A–D–A type co-oligomers used as donors in organic solar cells are presented. Devices prepared exclusively from non-halogenated solvents via doctor-blading gave power conversion efficiencies of up to 7%.


2016 ◽  
Vol 4 (17) ◽  
pp. 3715-3725 ◽  
Author(s):  
Christoph Wetzel ◽  
Amaresh Mishra ◽  
Elena Mena-Osteritz ◽  
Karsten Walzer ◽  
Martin Pfeiffer ◽  
...  

A new class of A–D–A molecular donor materials based on planar S,N-heterohexacenes is developed for vacuum-processed planar and bulk-heterojunction solar cells providing promising power conversion efficiencies up to 7.1%.


2012 ◽  
Vol 209-211 ◽  
pp. 1719-1722
Author(s):  
Ming Guo Zhang ◽  
Nan Hai Sun

A thin Ag layer embedded between layers of zinc tin oxide (ZTO) are compared to cells using an indium tin oxide electrode was investigated for inverted organic bulk heterojunction solar cells employing a multilayer electrode. ZTO/Ag/ ZTO (ZAZ) electrode is the preparation at room temperature, a high transparency in the visible part of the spectrum, and a very low sheet resistance comparable to treated ITO without the need for any thermal post deposition treatment as it is necessary for ITO. The In-free ZAZ electrodes exhibit a favorable work function of 4.3 eV and are shown to allow for excellent electron extraction even without a further interlayer. This renders ZAZ a perfectly suited bottom electrode for inverted organic solar cells with simplified cell architecture.


2021 ◽  
Author(s):  
Zhaofan Yang ◽  
Shijie Liang ◽  
Baiqiao Liu ◽  
Jing Wang ◽  
Fan Yang ◽  
...  

Single-component organic solar cells (SCOSCs) have been recognized as the promising photovoltaic technology due to the excellent stability, but their power conversion efficiencies (PCEs) are far lagging their bulk-heterojunction counterparts....


2016 ◽  
Vol 7 (25) ◽  
pp. 4160-4175 ◽  
Author(s):  
F. Caffy ◽  
N. Delbosc ◽  
P. Chávez ◽  
P. Lévêque ◽  
J. Faure-Vincent ◽  
...  

Dibenzosilole and quinoxaline based copolymers were synthesized and tested in bulk-heterojunction solar cells showing power conversion efficiencies up to 5.14%.


2015 ◽  
Vol 212 (10) ◽  
pp. 2246-2254 ◽  
Author(s):  
Hui Jin ◽  
Ardalan Armin ◽  
Mike Hambsch ◽  
Qianqian Lin ◽  
Paul L. Burn ◽  
...  

2008 ◽  
Vol 1091 ◽  
Author(s):  
Daniel Tobjork ◽  
Harri Aarnio ◽  
Tapio Mäkelä ◽  
Ronald Österbacka

AbstractThe roll-to-roll reverse gravure (RG) coating technique was used to produce thin homogeneous films (∼100 nm) for organic bulk heterojunction solar cells. The conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and the active layer regioregular poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) were successfully subsequently RG coated on an ITO covered plastic substrate in ambient air. Working solar cells were achieved after annealing and thermal evaporation of the top contact. The AM1.5 power conversion efficiency (PCE) of the RG coated organic solar cells was determined to 0.74% (at 100 mW/cm2). This was very similar to the results of a reference device that was spin coated on a glass substrate in a nitrogen glove box.


2019 ◽  
Vol 7 (22) ◽  
pp. 6641-6648
Author(s):  
Rafael Sandoval-Torrientes ◽  
Alexey Gavrik ◽  
Anna Isakova ◽  
Abasi Abudulimu ◽  
Joaquín Calbo ◽  
...  

Geminate recombination rates are successfully predicted for series of small-molecule bulk heterojunction solar cells applying the Marcus–Levich–Jortner equation.


Sign in / Sign up

Export Citation Format

Share Document