Influence of growth conditions on the physical properties of Mn doped ZnO thin films grown by reactive magnetron sputtering

2015 ◽  
Vol 1805 ◽  
Author(s):  
Adrian Camacho-Berrios ◽  
Victor Pantojas ◽  
Wilfredo Otaño

ABSTRACTZnO thin films were deposited using the DC pulsed magnetron sputtering technique to study how composition and structure influences their magnetic properties. Low sputtering powers and high substrate temperatures were used to increase adatom mobility during deposition, resulting in increased crystallite size and reduced residual stress in the films. Another set of ZnO films were Mn-doped using a second magnetron gun and the amount of doping was changed by controlling the RF sputtering power. For these films, the crystallite size increased with the amount of Mn. The magnetic properties of these materials were counterintuitive; not intentionally doped ZnO showed the highest magnetization and magnetization decreased with increasing Mn concentration.

2012 ◽  
Vol 24 (6) ◽  
pp. 1782-1787 ◽  
Author(s):  
S. Balamurali ◽  
R. Chandramohan ◽  
N. Suriyamurthy ◽  
P. Parameswaran ◽  
M. Karunakaran ◽  
...  

2019 ◽  
Vol 17 (12) ◽  
pp. 987-990
Author(s):  
K. Rathi Devi ◽  
G. Selvan ◽  
M. Karunakaran ◽  
G. Rajesh Kanna ◽  
K. Kasirajan

In this work, Mn doped Zinc Oxide (ZnO) thin films were coated onto glass substrates by low cost SILAR technique by altering dipping cycle such as 40, 60, 80 and 100. The film thickness was estimated using weight gain method and it revealed that the film thickness increased with dipping cycle. The structural, morphological, elemental and FTIR properties of the coated Mn doped ZnO films were studied using X-ray diffraction (XRD), scanning electron microscope (SEM), EDAX and FTIR spectrophotometer respectively. The prepared films were found to be hexagonal structure with polycrystalline in nature with preferential orientation along (002) plane. X-ray line profile analysis was used to evaluate the micro structural parameters. The crystallite size values are increased with increase of dipping cycle. Morphological results showed that the dipping cycle has a marked effect on morphology of the prepared Mn doped ZnO thin films. EDAX studies showed that the presence of Zinc, Oxygen and Mn content.


Rare Metals ◽  
2012 ◽  
Vol 31 (2) ◽  
pp. 154-157 ◽  
Author(s):  
Hailing Yang ◽  
Xiaoguang Xu ◽  
Guoqing Zhang ◽  
Jun Miao ◽  
Xin Zhang ◽  
...  

2011 ◽  
Vol 197-198 ◽  
pp. 348-351
Author(s):  
Shan Shan Luo ◽  
Wen Kui Li ◽  
Ze Hua Zhou

N doped ZnO thin films were prepared by magnetron sputtering. The effect of bias voltage, N2flow and introducing of Al on the behavior of N doping into ZnO films were investigated. The results show that there is little help for N doping into the ZnO films by just adjusting N flow rate because the magnetron sputtering method has a relative weak ability on dissociating the N2. The data of co-doping of Al and N into ZnO films revealed that co-doping is an effective way to advance the N doping into ZnO films. The coordination of Al doping and bias voltage could help the N doping effectively.


Sign in / Sign up

Export Citation Format

Share Document