Effect of Trace Contaminants on PEM Fuel Cell Performance

2005 ◽  
Vol 885 ◽  
Author(s):  
Tony Thampan ◽  
Rick Rocheleau ◽  
Keith Bethune ◽  
Douglas Wheeler

ABSTRACTAt the Hawaii Fuel Cell Test Facility a systematic evaluation of the impact of impurities in hydrogen is underway to evaluate the effects on the performance of PEM fuel cells. Initial tests are being conducted using carbon monoxide and hydrocarbon contaminants. The effects of carbon monoxide poisons at atmospheric and pressurized operating conditions have shown a strong dependence on concentration of the impurity over the range 6.7 µmole/mole to 29.3 µmole/mole. Additionally, benzene and toluene were tested at 20 µmole/mole. Although both benzene and toluene showed no evidence of fuel cell degradation, on-line gas analysis of the exit anode stream showed that toluene hydrogenation occurs in the anode resulting in 90% conversion of the toluene to methyl-cyclohexane.

Author(s):  
Stefano Campanari ◽  
Giulio Guandalini ◽  
Jorg Coolegem ◽  
Jan ten Have ◽  
Patrick Hayes ◽  
...  

The chlor-alkali industry produces significant amounts of hydrogen as byproduct and an interesting benefit can be obtained by feeding hydrogen to a PEM fuel cell unit, whose electricity and heat production can cover part of the chemical plant consumptions. The estimated potential of such application is up to 1100 MWel installed in the sole China, a country featuring a large presence of chlor-alkali plants. This work presents the modeling, development and first experimental results from field tests of a 2 MW PEM fuel cell power plant, built within the European project DEMCOPEM-2MW and installed in Yingkou, China as the current world’s largest PEM fuel cell installation. After a preliminary introduction to the market potential of PEM Fuel cells in the chlor-alkali industry, it is first discussed an overview of project’s MEA and fuel cell development for long life stationary applications, focusing on the design-for-manufacture process and the high-volume manufacturing route developed for the 2MW plant. The work then discusses the modeling of the power plant, including a specific lumped model predicting FC stack behavior as a function of inlet streams conditions and power set point, according to regressed polarization curves. Cells performance decay vs. lifetime reflects long-term stack test data, aiming to evidence the impact on overall energy balances and efficiency of the progression of lifetime. BOP is modeled to simulate auxiliaries consumption, pressure drops and components operating conditions. The model allows studying different operational strategies that maintain the power production during lifetime, minimizing efficiency losses; as well as to investigate the optimized operating setpoint of the plant at full load and during part-load operation. The last section of the paper discusses the experimental results, through a complete analysis of the plant performance after plant startup, including energy and mass balances and allowing to validate the model. Cumulated indicators over the first nine months of operations regarding energy production, hydrogen consumption and efficiency are also discussed.


Author(s):  
Denver F. Cheddie ◽  
Norman D. H. Munroe

A parametric model of a proton exchange membrane fuel cell (PEMFC) operating with a polybenzimidazole (PBI) membrane is presented. The model is three dimensional and applicable for PEMFCs operating at intermediate temperatures (120–150 °C). It accounts for all transport and polarization phenomena, and the results compare well with published experimental data for equivalent operating conditions. Results for oxygen concentration and temperature variations are presented. The model predicts the oxygen depletion, which occurs in the catalyst area under the ribs, and which gives an indication of the catalyst utilization. Results also predict that for an output power density of 1 kW m−2, a cell temperature rise of up to 30 K can be expected for typical laboratory operating conditions. Parametric analyses indicate that significant gain in fuel cell performance can be expected by increasing the conductivity of the PBI membrane. Further, results demonstrate that when the catalyst region is well utilized, increasing the catalyst activity results in only a small improvement in performance.


Author(s):  
Han-Sang Kim ◽  
Taehun Ha ◽  
Kyoungdoug Min

Water management is a critical operation issue for achieving the highest possible performance of proton exchange membrane (PEM) fuel cells. Quantitative determination of water and species distribution is needed to understand the water management and reactant distribution effects. In this study, the measurement of water and oxygen distributions along cathode flow channels was carried out using gas chromatography (GC). Generally, it is difficult to measure water distribution where water concentration is too high. Here, the measurement of high levels of water saturation in cathode channels was performed according to fuel cell operating conditions. GC measurement was also carried out for flooding and non-flooding conditions. To compare the experimental results with computational results, the three-dimensional CFD simulation of a unit fuel cell was performed using es-pemfc, which is the PEM fuel cell module of commercial CFD code STAR-CD. For the entrance of flow channel that has relatively lower level of water content, the calculated results showed good agreement with measured results. However, some discrepancy between calculated and experimental results was still found for the flow channels near the cathode outlet. The study provides the necessity of the development and adoption of a comprehensive multidimensional PEM fuel cell models including two-phase flow and cathode flooding phenomena for the optimization of fuel cell performance.


Author(s):  
T. Berning ◽  
N. Djilali

This paper presents the results of a parametric study conducted using a three-dimensional, non-isothermal model of a PEM fuel cell. The effect of various operational, geometric and property parameters was investigated in detail. The availability of reliable data for setting various modeling parameters was found to be critical to obtain physically realistic results. In addition to the effect of temperature and pressure, geometrical and material parameters such as the gas-diffusion thickness and porosity as well as the ratio between the channel width and the collector plate land area were investigated in detail, and it was found that the contact resistance plays an important role for the evaluation of the impact of such parameters on the fuel cell performance. The results demonstrate the usefulness of this computational model as a design and optimization tool.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 144
Author(s):  
Abed Alaswad ◽  
Abdelnasir Omran ◽  
Jose Ricardo Sodre ◽  
Tabbi Wilberforce ◽  
Gianmichelle Pignatelli ◽  
...  

This review critically evaluates the latest trends in fuel cell development for portable and stationary fuel cell applications and their integration into the automotive industry. Fast start-up, high efficiency, no toxic emissions into the atmosphere and good modularity are the key advantages of fuel cell applications. Despite the merits associated with fuel cells, the high cost of the technology remains a key factor impeding its widespread commercialization. Therefore, this review presents detailed information into the best operating conditions that yield maximum fuel cell performance. The paper recommends future research geared towards robust fuel cell geometry designs, as this determines the cell losses, and material characterization of the various cell components. When this is done properly, it will support a total reduction in the cost of the cell which in effect will reduce the total cost of the system. Despite the strides made by the fuel cell research community, there is a need for public sensitization as some people have reservations regarding the safety of the technology. This hurdle can be overcome if there is a well-documented risk assessment, which also needs to be considered in future research activities.


Author(s):  
Luis Breziner ◽  
Peter Strahs ◽  
Parsaoran Hutapea

The objective of this research is to analyze the effects of vibration on the performance of hydrogen PEM fuel cells. It has been reported that if the liquid water transport across the gas diffusion layer (GDL) changes, so does the overall cell performance. Since many fuel cells operate under a vibrating environment –as in the case of automotive applications, this may influence the liquid water concentration across the GDL at different current densities, affecting the overall fuel cell performance. The problem was developed in two main steps. First, the basis for an analytical model was established using current models for water transport in porous media. Then, a series of experiments were carried, monitoring the performance of the fuel cell for different parameters of oscillation. For sinusoidal vibration at 10, 20 and 50Hz (2 g of magnitude), a decrease in the fuel cell performance by 2.2%, 1.1% and 1.3% was recorded when compared to operation at no vibration respectively. For 5 g of magnitude, the fuel cell reported a drop of 5.8% at 50 Hz, whereas at 20 Hz the performance increased by 1.3%. Although more extensive experimentation is needed to identify a relationship between magnitude and frequency of vibration affecting the performance of the fuel cell as well as a throughout examination of the liquid water formation in the cathode, this study shows that sinusoidal vibration, overall, affects the performance of PEM fuel cells.


Author(s):  
Nicola Zuliani ◽  
Rodolfo Taccani ◽  
Robert Radu

High temperature PEM (HTPEM) fuel cell based on polybenzimidazole polymer (PBI) and phosphoric acid, can be operated at temperature between 120°C and 180°C. Reactants humidification is not required and CO content up to 1% in fuel can be tolerated, affecting only marginally performance. This is what makes HTPEM fuel cells very attractive, as low quality reformed hydrogen can be used and water management problems are avoided. This paper aims to present the preliminary experimental results obtained on a HTPEM fuel cell fed with LPG using a compact steam reformer. The analysis focus on the reformer start up transient, on the influence of the steam to carbon ratio on reformate CO content and on the single fuel cell performance at different operating conditions. By analyzing the mass and energy balances of the fuel processor, fuel cell system, and balance-of-plant, a previously developed system simulation model has been used to provide critical assessment on the conversion efficiency for a 1 kWel system. The current study attempts to extend the previously published analyses of integrated HTPEM fuel cell systems.


Author(s):  
M. Minutillo ◽  
E. Jannelli ◽  
F. Tunzio

The main objective of this study is to evaluate the performance of a proton exchange membrane (PEM) fuel cell generator operating for residential applications. The fuel cell performance has been evaluated using the test bed of the University of Cassino. The experimental activity has been focused to evaluate the performance in different operating conditions: stack temperature, feeding mode, and fuel composition. In order to use PEM fuel cell technology on a large scale, for an electric power distributed generation, it could be necessary to feed fuel cells with conventional fuel, such as natural gas, to generate hydrogen in situ because currently the infrastructure for the distribution of hydrogen is almost nonexistent. Therefore, the fuel cell performance has been evaluated both using pure hydrogen and reformate gas produced by a natural gas reforming system.


2016 ◽  
Vol 20 (5) ◽  
pp. 1421-1433 ◽  
Author(s):  
Ismet Tikiz ◽  
Imdat Taymaz

Cell temperature and selection of the reactant gases are crucial parameters for the design and optimization of fuel cell performance. In this study, effect of operating conditions on the performance of Solid Oxide Fuel (SOFC) has been investigated. Application of Response Surface Methodology (RSM) was applied to optimize operations conditions in SOFC. For this purpose, an experimental set up for testing of SOFC has been established to investigate the effect of Hydrogen, Oxygen, Nitrogen flow rates and cell temperature parameters on cell performance. Hydrogen flow rate, oxygen flow rate, nitrogen flow rate and cell temperature were the main parameters considered and they were varied between 0.25 and 1 L/min, 0.5 and 1 L/min, 0 and 1 L/min and 700-800 oC in the analyses respectively. The maximum power density was found as 0.572 W/cm2 in the experiments.


Sign in / Sign up

Export Citation Format

Share Document