Metallization Process for Polydimethylsiloxane (PDMS) Rubber

2007 ◽  
Vol 1009 ◽  
Author(s):  
Stéphane Béfahy ◽  
Sami Yunus ◽  
Véronique Burguet ◽  
Jean-Sébastien Heine ◽  
Etienne Dague ◽  
...  

AbstractA process to fabricate stretchable and adherent gold tracks on flat silicone rubber substrates is studied by X-ray photoelectron spectroscopy (XPS), static water contact angle measurement, atomic force microscopy (AFM) and scanning electron microscopy (SEM). The process involves several steps: curing flat silicone substrate; removing uncured oligomers by hexane Soxhlet extraction; pre-stretching the substrate; activating the strained silicone surface by an oxygen plasma treatment; coating the strained substrate with 5nm titanium and 80nm gold layers by e-beam evaporation; and finally releasing the sample. The plasma treatment creates a thin brittle silica-like layer that temporarily increases the substrate's surface energy. Indeed the plasma treatment is followed by a hydrophobic recovery. As a consequence, the delay between plasma treatment and metal deposition has to be reduced as much as possible. The silica-like layer can be nicely observed after release. Its thickness is estimated to be around 20nm to 50nm. The entire process allows us to obtain stretchable metallized samples that remain conductive even after an excessive deformation leading to electrical failure.

2013 ◽  
Vol 747 ◽  
pp. 178-181 ◽  
Author(s):  
Wasana Kosorn ◽  
Boonlom Thavornyutikarn ◽  
Wanida Janvikul

Polycaprolactone (PCL) was surface modified with alkaline hydrolysis by NaOH and/or low pressure oxygen (O2) plasma treatment. The hydrolysis was conducted in two different stages: one was performed prior to PCL scaffold fabrication by a high pressure supercritical CO2 technique; the other was carried out after the fabrication. The resulting hydrolyzed PCL scaffolds, with pore sizes in the range of 150-250 μm, were denoted as pre-HPCL and post-HPCL, respectively. Both non-hydrolyzed and hydrolyzed PCL scaffolds were subsequently subjected to the plasma treatment, to further enhance the hydrophilicity of the scaffolds. The surface morphology, wettability and chemical composition of all PCL scaffolds were analyzed by scanning electron microscopy (SEM), water contact angle measurement, and X-ray photoelectron spectroscopy (XPS), respectively. It was found that the surface of the scaffolds turned from fairly smooth to highly rough after the hydrolysis and plasma treatment, particularly when both treatments were in use. The post-hydrolysis induced more surface roughness, compared to the pre-hydrolysis. In addition, the water contact angles on the scaffolds enormously reduced after the treatments; plasma treatment, however, showed a more prominent effect than the alkaline hydrolysis. Although expressing a zero-degree contact angle, the plasma-treated pre-HPCL scaffold was wetted more readily than the plasma-treated post-HPCL. These were in good agreement with the XPS results; interestingly, the plasma-treated pre-HPCL scaffold exhibited the greatest O/C atomic ratio among the PCL scaffolds. This indicated its highest extent of PCL chain oxidation, a degradation of ester groups into-COOH and-OH groups.


2017 ◽  
Vol 05 (01) ◽  
pp. 1750003 ◽  
Author(s):  
Xiangyang Peng ◽  
Zijian Li ◽  
Feng Zheng ◽  
Ni Zhang ◽  
Zhen Huang ◽  
...  

A series of silicone rubber samples with different cyclosiloxanes contents have been successfully prepared, and their hydrophobic recovery behaviors and mechanism were investigated in detail. The gas chromatography-mass spectroscopy technique after Soxhlet extraction was utilized to examine the low molecular weight siloxanes in the sample, SEM was used to observe the surface morphology of the silicone rubber influenced by plasma treatment, and contact angle measurement was applied to probe the hydrophobic recovery of the sample surface after plasma treatment at different storage temperatures. The storage time-dependent contact angle of water can be well fitted by the diffusion model calculated from Fick’s second law. The results imply that the hydrophobic recovery of silicone rubber is related to the diffusion of low molecular weight siloxanes, while larger content or higher temperature can induce faster hydrophobic recovery.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 370
Author(s):  
Hadi Gholamiyan ◽  
Behnam Gholampoor ◽  
Reza Hosseinpourpia

This research investigates the effect of plasma treatment with air, nitrogen (N2), and carbon dioxide (CO2) gases on the performance of waterborne (acrylic) and solvent-borne (polyester) coated fir (Abies alba M.) wood samples. The properties of the plasma-coated samples were analyzed before and after exposure to accelerated weathering and compared with those of untreated and solely treated ones. According to pull-off testing, the coating adhesion of the wood samples was considerably improved by plasma treatment, and obvious differences were observed between different plasma gases. The effect was more pronounced after the weathering test. Similar results were obtained for the abrasion resistance of the samples. The water contact angle measurement illustrated more hydrophilic character in the solely plasma-treated wood in comparison with the untreated wood. The application of coatings, however, strongly improved its hydrophobic character. The performances of waterborne and solvent-borne coatings on plasma-treated wood were comparable, although slightly better values were obtained by the waterborne system. Our results exhibit the positive effect of plasma treatment on coating performances and the increased weather resistance of the waterborne and solvent-borne coating systems on plasma-treated wood.


2021 ◽  
Vol 9 ◽  
Author(s):  
Li Chen ◽  
Gang Wu ◽  
Yin Huang ◽  
Changning Bai ◽  
Yuanlie Yu ◽  
...  

Taking advantage of the strong charge interactions between negatively charged graphene oxide (GO) sheets and positively charged poly(diallyldimethylammonium chloride) (PDDA), self-assembled multilayer films of (GO/PDDA)n were created on hydroxylated silicon substrates by alternating electrostatic adsorption of GO and PDDA. The formation and structure of the films were analyzed by means of water contact angle measurement, thickness measurement, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Meanwhile, tribological behaviors in micro- and macro- scale were investigated by AFM and a ball-on-plate tribometer, respectively. The results showed that (GO/PDDA)n multilayer films exhibited excellent friction-reducing and anti-wear abilities in both micro- and macro-scale, which was ascribed to the special structure in (GO/PDDA)n multilayer films, namely, a well-stacked GO–GO layered structure and an elastic 3D crystal stack in whole. Such a film structure is suitable for design molecular lubricants for MEMS and other microdevices.


2011 ◽  
Vol 396-398 ◽  
pp. 1619-1623
Author(s):  
Zhao Ping Song ◽  
Jun Rong Li ◽  
Hui Ning Xiao

Hydrophobic modification of cellulose fibres was conducted by plasma-induced polymer grafting in an attempt to increase the hydrophobicity of paper. Two hydrophobic monomers, i.e., butyl acrylate (BA) and 2-ethylhexyl acrylate (2-EHA) were grafted on cellulose fibres, induced by atmospheric cold plasma. Various influencing factors associated with the plasma-induced grafting were investigated, including the contact time and reaction temperature with monomers, and the dosage of monomers. Contact-angle measurement, infrared spectrum (IR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM) were used to ascertain the occurrence of the grafting. The results showed that the hydrophobic property of the modified paper sheet was improved significantly after the plasma-induced grafting. The water contact angle on the surface of the paper reached up to higher than125°.


2018 ◽  
Vol 913 ◽  
pp. 375-383
Author(s):  
Shuo Tian Sun ◽  
Yan Hua Lei ◽  
Tao Liu ◽  
Run Hua Fan ◽  
Shi Bin Sun

Bio-inspired in situ fabrication of 11-Mercaptoundecanoic Acid was proposed to prepare self-assembled coating of alkanethiolates on SS304 alloy. In this method, the SS304 was coated with a reactive biopolymer – Polydopamine (PDA) by dispersing them in a dopamine solution and mildly stirring at room temperature with subsequent covalent attachment of 11-Mercaptoundecanoic Acid molecules through the interaction between thiol groups and Polydopamine. The formation and surface structure of the coating were characterized by water contact angle measurement, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The electronic properties of such obtained functional film were studied by potentiodynamic polarization curve and EIS in 3.5% NaCl solution. Corrosion protection efficiency near 99 % was evaluated, and the excellent corrosion resistance property could be ascribed to the compact film structure and good seawater stability for modified SS304 surface, especially in limiting the infiltration of Cl-.


2014 ◽  
Vol 939 ◽  
pp. 186-193 ◽  
Author(s):  
Chih Chung Yang ◽  
Wen Tse Hsiao ◽  
Chien Kai Chung ◽  
Kuo Cheng Huang

This study presents a new method for surface modification of polymeric materials by using pulsed UV laser welding technology. The bonding procedures including ablation treatment, Oxygen plasma treatment, adhesive layer bonding and cured by pulsed UV laser writing system was exhibited. The investigation of various parameters for UV laser writing system was performed and discussed by using water contact angle measurement. This technique has been successfully applied to bond dissimilar polymer substrates (polydimethylsiloxane (PDMS) to polymethylmethacrylate (PMMA)). The scanning electron microscopy (SEM) image reveals clearly that there was no clogging in the microchannel or deformation observed between PDMS and PMMA. The method was straightforward and the integrity of microfluidic features was successfully preserved after bonding.


2017 ◽  
Vol 381 ◽  
pp. 3-7
Author(s):  
Ko Shao Chen ◽  
Shao Hsuan Tsao ◽  
Rui Wen Sung ◽  
Ying Chen Ye ◽  
Bo Han Zeng ◽  
...  

Thermoplastic urethane (TPU) nonwoven is characterized by high elasticity, tensile strength, large elongation and structural stability and widely used in biomaterial. However, the hydrophobic nature of TPU nonwoven restricts its application. To improve surface hydrophilicity and hydrophobicity, the surface modification of materials is carried out by plasma treatment or ion-beam irradiation. According to the wettability treatment experiences that substrate usually using two processing or more to get one side hydrophilic and another side hydrophobic. In this study, use of cold plasma treatment in enhancing surface wettability of TPU nonwoven was studied. The surface properties of plasma treated films are characterized by Atomic Force Microscope (AFM), water contact angle measurement, and scanning electron microscopy (SEM). This study has demonstrated that Argon plasma treatment produces hydrophobic or hydrophilic surface on the TPU nonwoven. The method is performed by first placing a hydrophobic material on one side of substrate and bring this side to face the lower electrode. By controlling the RF power of the reactor, hydrophilic or hydrophobic surface can be prepared on the other side. This technique can be applied to wound dressing.


2017 ◽  
Vol 89 (3) ◽  
pp. 401-410 ◽  
Author(s):  
Yongqiang Li ◽  
Chao Zou ◽  
Jianzhong Shao ◽  
Ya’nan Li

Cotton fabric is commonly used in daily life, but it is easily wetted and contaminated by liquid. Herein, we present a simple and environmentally friendly plasma technology for hydrophobic modification of cotton fabric. In order to endow superhydrophobicity to cotton fabric, helium plasma inducing graft polymerization of 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane (D4Vi) was utilized to wrap SiO2 particles on cotton fabrics. Cotton fabrics were successively dipped in silica sol and D4Vi, then treated by plasma. Cotton fabrics before and after modification were characterized by using field emission scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and water contact angle measurement. The experimental results showed that the cotton-SiO2-D4Vi consisted of nanoscale SiO2 protrusions and low-surface-energy film polymerized by D4Vi. In addition, the one wrapped SiO2 of 161 nm presented excellent hydrophobicity, washing durability, and repellency toward different types of liquids with a water contact angle of 152°.


2016 ◽  
Vol 52 (1) ◽  
pp. 87-92 ◽  
Author(s):  
S. Gao ◽  
H. Watanabe ◽  
K. Nakane ◽  
K. Zhao

A kind of silica nanofibers (SNF) mats with superhydrophobicity and superlipophilicity as well as excellent heat resistance, had been prepared by modifying of 1, 1, 1, 3, 3, 3-hexamethyldisilazane on electrospun SNF mats. The effects of heat treatment time on properties of modified SNF mats were investigated by scanning electron microscopy, nitrogen absorption analysis, X-ray photoelectron spectroscopy, and contact angle measurement. With high specific surface area 240.1 m2/g, the optimal modified SNF mat approached water contact angle (WCA) 153.2? and fuel contact angle (FCA) 0?, furthermore, even after annealing by 450?C in air for 1h , WCA remained at 135.5? and FCA kept at 3.8?, which opened a new way to improve heat resistance of fuel-water filter paper.


Sign in / Sign up

Export Citation Format

Share Document