Top-gate ZnO-based TFTs by RF Sputtering

2007 ◽  
Vol 1035 ◽  
Author(s):  
Shahrukh Khan ◽  
Abbas jamshidi-Roudbari ◽  
Miltiadis Hatalis

AbstractThis work emphasizes room temperature deposition and fabrication of top-gated staggered structure ZnO-TFTs and integration of ZnO-TFT based simple logic circuits. We synthesized ZnO thin films by RF sputtering in an Ar/Oxygen ambience with no intentional heating of the substrates. The electrical, optical and structural properties of the ZnO thin films can be well-controlled by altering process parameters such as RF power density and relative Oxygen partial pressure. Typical deposition was carried out at a chamber pressure of 15 mTorr, Ar/Oxygen flow rates of 15 sccm/1 sccm and RF power density of 3W/cm2. The resistivity of the as-deposited films was between 104-106 Ù-cm with high optical transparency (>80%) in the visible spectrum and minimal surface roughness as detected by high-resolution AFM imaging. Gated van der Pauw and Kelvin-bridge structures were lithographically patterned to asses ZnO channel resistance. In the completed devices, a dual-stack (Ta2O5/SiO2) dielectric layer was effective in suppressing gate-leakage current below 10 pA and enabled depletion-mode ZnO-TFT operation exhibiting hard saturation. A Ti/Au metallization scheme was adopted to provide good ohmic contact to ZnO. TFTs retained well-behaved transfer characteristics down to a channel length of 4 ìm with on/off drain current ratio exceeding 105, threshold voltage between -15 V to -5 V and inverse sub-threshold slope of around 1.75 V/decade.

2011 ◽  
Vol 415-417 ◽  
pp. 1867-1870 ◽  
Author(s):  
Chao Chin Chan ◽  
Yuan Tai Hsieh ◽  
Cheng Yi Chen ◽  
Wen Cheng Tzou ◽  
Chia Ching Wu ◽  
...  

Sr0.6Ba0.4Nb2O6 (SBN) thin films were prepared by radio frequency (RF) sputtering onto the SiO2/Si/Al and Pt/Ti/Si substrates to form the MFIS and MFM structures. Their deposition rates increased with decreasing oxygen concentration and with increasing RF power. Their optimal deposition parameters were the substrate temperature of 500°C, chamber pressure of 10 mTorr, oxygen concentration of 40%, and RF power of 120W, respectively. The rapid temperature annealing (RTA) process had large effects on the grain growth of the SBN thin films. The effects of different RTA temperatures on the leakage current density - electrical field curves and the capacitance - voltage curves of the SBN thin films were also investigated.


2007 ◽  
Vol 336-338 ◽  
pp. 581-584
Author(s):  
Chong Mu Lee ◽  
Choong Mo Kim ◽  
Sook Joo Kim ◽  
Yun Kyu Park

ZnO thin films were deposited on sapphire (α-Al2O3) substrates by RF magnetron sputtering at substrate temperatures of 500, 600, 650 and 700°C for 3h at rf-powers ranging from 60 to 120 W. The FWHM of the XRD (0002) peak for the ZnO film was reduced down to 0.07° by optimizing the chamber pressure at a substrate temperature of 700°C. Sharp near-band-edge emission was observed in the photoluminescence (PL) spectrum for the ZnO film grown at room temperature. Excess RF power aggravates the crystallinity and the surface roughness of the ZnO thin film. Pole figure, AES and PL analysis results confirm us that RF magnetron sputtering offers ZnO films with a lower density of crystallographic defects. ZnO films with a high quality can be obtained by optimizing the substrate temperature, RF power, and pressure of the RF magnetron sputtering process.


2018 ◽  
Vol 47 (9) ◽  
pp. 5537-5547 ◽  
Author(s):  
E. Flores-García ◽  
P. González-García ◽  
J. González-Hernández ◽  
R. Ramírez-Bon

1989 ◽  
Vol 169 ◽  
Author(s):  
F.H. Garzon ◽  
J. G. Beery ◽  
D. K. Wilde ◽  
I. D. Raistrick

AbstractThin films of Y‐Ba‐Cu‐O were produced by RF sputtering of YBa2Cu3O7‐x ceramic targets, using a variety of plasma compositions, RF power levels, and substrate temperatures. Post annealing of these films in oxygen produced superconducting films with Tc values between 40‐60 K, broad transition widths and semiconductor‐like electrical behavior above Tc. Subsequent annealing at 850°C in an inert gas with a residual oxygen partial pressure of ≤10 ppm followed by an oxygen anneal produced high quality thin films: Tc> 85 K with narrow transition widths. The structure and morphology of these films during reduction‐oxidation processing were monitored using X‐ray diffraction and electron microscopy.


2019 ◽  
Vol 215 ◽  
pp. 116631 ◽  
Author(s):  
D. Mendil ◽  
F. Challali ◽  
T. Touam ◽  
A. Chelouche ◽  
A.H. Souici ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
M. Acosta ◽  
I. Riech ◽  
E. Martín-Tovar

Zinc oxide (ZnO) thin films were grown by nonreactive RF sputtering at room temperature under varying argon pressures (PAr). Their optical band gap was found to increase from 3.58 to 4.34 eV when the argon pressure increases from 2.67 to 10.66 Pa. After annealing at 200°C and 500°C, optical band gaps decrease considerably. The observed widening of the band gap with increasingPArcan be understood as being a consequence of the poorer crystallinity of films grown at higher pressures. Measurements of morphological and electrical properties of these films correlate well with this picture. Our main aim is to understand the effects ofPAron several physical properties of the films, and most importantly on its optical band gap.


2015 ◽  
Vol 10 (2) ◽  
pp. 183-186 ◽  
Author(s):  
Suat Pat ◽  
Volkan Şenay ◽  
Soner Özen ◽  
Şadan Korkmaz ◽  
Birol Geçici

Sign in / Sign up

Export Citation Format

Share Document