Control of Bonded SiH in Silicon Oxides Deposited by Remote Plasma Enhanced CVD

1987 ◽  
Vol 105 ◽  
Author(s):  
D. V. Tsu ◽  
G. N. Parsons ◽  
G. Lucovsky ◽  
M. W. Watkins

AbstractThis paper describes Optical Emission Spectrocopy (OES) and Mass Spectrometry (MS) studies of the plasma region in the Remote Plasma Enhanced Chemical Vapor Deposition (PECVD) of amorphous hydrogenated silicon (a-Si:H) and silicon oxide thin films. In Remote PECVD, only the O2/He mixture is plasma excited, silane is introduced into the deposition chamber well below the plasma region. Deposition of films has been studied over a wide range of relative He and O2flows, between 100% He and 100% O2. The incorporation of SiH in the oxides derives from the same mechanism as the deposition of a-Si:H, i.e., a metastable He induced fragmentation of silane.

1987 ◽  
Vol 98 ◽  
Author(s):  
D. V. Tsu ◽  
G. Lucovsky

ABSTRACTWe have deposited a range of silicon oxides by the Remote Plasma Enhanced CVD method. By varying gas mixtures and/or substrate temperature, it is possible to deposit films that are essentially stoichiometric SiO_, Si-deficient oxides which have OH groups but no SiH and Si-rich oxides which have SiH groups and no OH. This paper addresses three issues : (1) the nature of the infrared vibrations associated with the SiH and SiOH groups; (2) the use of D for H substitutions to study the vibrations in (1); and (3) the chemical origin of the SiOH group in the Si-deficient films.


1985 ◽  
Vol 54 ◽  
Author(s):  
G. Lucovsky ◽  
P. D. Richard ◽  
D. V. Tsu ◽  
R. J. Markunas

ABSTRACTWe discuss a new low temperature process for the deposition of electronic quality thin films of silicon oxide and nitride. In contrast to conventional plasma enhanced chemical vapor deposition [PECVD], this process involves the remote excitation of one of the gas reactants followed by the extraction of the active species out of the plasma region where they react to generate precursor molecules. The precursors undergo a CVD reaction at a heated substrate to form the desired thin film. The process is called remote PECVD [RPECVD]. Insulators produced in this way show significant reductions in the incorporation of impurity groups such as SiH and SiOH relative to films grown by the PECVD process at the same substrate temperatures.


2007 ◽  
Vol 124-126 ◽  
pp. 347-350 ◽  
Author(s):  
Yong Sup Yun ◽  
Takanori Yoshida ◽  
Norifumi Shimazu ◽  
Yasushi Inoue ◽  
Nagahiro Saito ◽  
...  

Plasma diagnosis was performed by means of optical emission spectroscopy in the plasma-enhanced chemical vapor deposition process for preparation of hydrocarbon-doped silicon oxide films. The chemical bonding states were characterized by a fourier-transform infrared spectrometer. Based on the results of the diagnosis in organosilane plasma and the chemical bonding states, a reaction model for the formation process of hydrocarbon-doped silicon oxide films was discussed. From the results of optical emission spectroscopy, we found that the oxygen atoms of methoxy groups in TMMOS molecules can be dissociated easily in the plasma and behave as a kind of oxidizing agent. Siloxane bondings in HMDSO, on the other hand, hardly expel oxygen atoms.


2013 ◽  
Vol 773 ◽  
pp. 520-523
Author(s):  
Ming Liang Zhang ◽  
Hui Dong Yang ◽  
Kai Zhao Yang

Transition films of amorphous hydrogenated silicon (a-Si:H) to microcrystalline silicon (μc-Si:H) have attracted much attention due to the stability, high overall quality for solar cells configuration. Hydrogenated amorphous and microcrystalline silicon films were deposited on glass substrates by a conventional plasma enhanced chemical vapor deposition (PEVCD) varying the substrate temperature from 275 to 350 °C. A silane concentration of 4% and a total flow rate of 100 sccm were used at a gas pressure of 267 Pa. The film thicknesses of the prepared samples were between 700 and 900 nm estimated from the optical transmission spectra. The deposition rates were between 0.2 and 0.3 nm/s. The phase composition of the deposited silicon films were investigated by Raman spectroscopy. The transition from amorphous to microcrystalline silicon was found at the higher temperatures. The crystallization process of the amorphous silicon can be affected by the substrate temperature. A narrow structural transition region was observed from the changes of the crystalline volume fraction. The dark electrical conductivity of the silicon films increased as the substrate temperature increasing.


Sign in / Sign up

Export Citation Format

Share Document