Effect of the Substrate Temperature on the Transition from Amorphous to Microcrystalline Silicon with High Hydrogen Dilution

2013 ◽  
Vol 773 ◽  
pp. 520-523
Author(s):  
Ming Liang Zhang ◽  
Hui Dong Yang ◽  
Kai Zhao Yang

Transition films of amorphous hydrogenated silicon (a-Si:H) to microcrystalline silicon (μc-Si:H) have attracted much attention due to the stability, high overall quality for solar cells configuration. Hydrogenated amorphous and microcrystalline silicon films were deposited on glass substrates by a conventional plasma enhanced chemical vapor deposition (PEVCD) varying the substrate temperature from 275 to 350 °C. A silane concentration of 4% and a total flow rate of 100 sccm were used at a gas pressure of 267 Pa. The film thicknesses of the prepared samples were between 700 and 900 nm estimated from the optical transmission spectra. The deposition rates were between 0.2 and 0.3 nm/s. The phase composition of the deposited silicon films were investigated by Raman spectroscopy. The transition from amorphous to microcrystalline silicon was found at the higher temperatures. The crystallization process of the amorphous silicon can be affected by the substrate temperature. A narrow structural transition region was observed from the changes of the crystalline volume fraction. The dark electrical conductivity of the silicon films increased as the substrate temperature increasing.

2013 ◽  
Vol 537 ◽  
pp. 197-200
Author(s):  
Chun Ya Li ◽  
Hao Zhang ◽  
Jun Li ◽  
Xi Feng Li ◽  
Jian Hua Zhang

Under different growth conditions, microcrystalline silicon thin films are deposited successfully on glass substrates by the double-frequency plasma enhanced chemical vapor deposition (PECVD). We report the systematic investigation of the effect of process parameters (hydrogen dilution, substrate temperature, forward power, reaction pressure, et al.) on the growth characteristics of microcrystalline silicon thin films. Raman scattering spectra are used to analyze the crystalline condition of the films and the experimental results. Optimizing the process parameters, the highest crystalline volume fraction of microcrystalline silicon films was achieved. It is found that the crystalline volume fraction of microcrystalline silicon films reaches 72.2% at the reaction pressure of 450 Pa, H2/SiH4 flow ratio of 800sccm/10sccm, power of 400 W and substrate temperature of 350 °C.


2006 ◽  
Vol 20 (03) ◽  
pp. 303-314 ◽  
Author(s):  
QING-SONG LEI ◽  
ZHI-MENG WU ◽  
JIAN-PING XI ◽  
XIN-HUA GENG ◽  
YING ZHAO ◽  
...  

We have examined the deposition of highly conductive boron-doped microcrystalline silicon (μc- Si:H ) films for application in solar cells. Depositions were conducted in a very high frequency plasma enhanced chemical vapor deposition (VHF PECVD) chamber. In the deposition processes, various substrate temperatures (TS) were applied. Highly conductive p-type microcrystalline silicon films were obtained at substrate temperature lower than 210°C. The factors that affect the conductivity of the films were investigated. Results suggest that the dark conductivity, which was determined by the Hall mobility and carrier concentration, is influenced by the structure. The properties of the films are strongly dependent on the substrate temperature. With TS increasing, the dark conductivity (σd) increases initially; reach the maximum values at certain TS and then decrease. Also, we applied the boron-doped μc- Si:H as p-layers to the solar cells. An efficiency of about 8.5% for a solar cell with μc- Si:H p-layer was obtained.


1999 ◽  
Vol 14 (6) ◽  
pp. 2554-2559 ◽  
Author(s):  
Arup Dasgupta ◽  
S. C. Saha ◽  
Swati Ray ◽  
R. Carius

P-type microcrystalline silicon-carbon alloy thin films have been prepared at low power by employing radio-frequency plasma-enhanced chemical vapor deposition (rf-PECVD) technique; judicious choice of deposition parameters is necessary. Substrate temperature has been observed to be the most critical parameter, while high hydrogen dilution is necessary but not a sufficient condition for obtaining crystallinity in silicon-carbon alloy thin films. Best microcrystallinity at moderate power density (78 mW/cm2) has been obtained at a fairly low substrate temperature (180 °C). The highest conductivity of 5.7 Scm−1 of a boron-doped microcrystalline sample could be achieved. Incorporation of carbon in these films has been confirmed from x-ray photoelectron spectroscopic (XPS) studies. Carbon is, however, incorporated only in the amorphous phase while the crystallites are of silicon only as observed from Raman spectra.


1998 ◽  
Vol 145 (7) ◽  
pp. 2508-2512 ◽  
Author(s):  
B. G. Budaguan ◽  
A. A. Sherchenkov ◽  
D. A. Stryahilev ◽  
A. Y. Sazonov ◽  
A. G. Radosel'sky ◽  
...  

2007 ◽  
Vol 989 ◽  
Author(s):  
Kyung-Bae Park ◽  
Ji-Sim Jung ◽  
Jong-Man Kim ◽  
Myung-kwan Ryu ◽  
Sang-Yoon Lee ◽  
...  

AbstractMicrocrystalline silicon was deposited on glass by standard plasma enhanced chemical vapor deposition using H2 diluted SiH4. Raman spectroscopy indicated a crystalline volume fraction of as high as 40% in films deposited at a substrate temperature 350oC. The deposition rate in films was as high as 10Å/sec. This process produced ¥ìc-Si TFTs with both an electron mobility of 10.9cm2/Vs, a threshold voltage of 1.2V, a subthreshold slop of 0.5V/dec at n-channel TFTs and a hole mobility of 3.2cm2/Vs, a threshold voltage of -5V, a subthreshold slop of 0.42V/dec at p-channel TFTs without post-fabrication annealing.


2004 ◽  
Vol 808 ◽  
Author(s):  
Czang-Ho Lee ◽  
Denis Striakhilev ◽  
Arokia Nathan

ABSTRACTUndoped and n+ hydrogenated microcrystalline silicon (μc-Si:H) films for thin film transistors (TFTs) were deposited at a temperature of 250°C with 99 ∼ 99.6 % hydrogen dilution of silane by standard 13.56 MHz plasma enhanced chemical vapor deposition (PECVD). High crystallinity m c-Si:H films were achieved at 99.6 % hydrogen dilution and at low rf power. An undoped 80 nm thick m c-Si:H film showed a dark conductivity of the order of 10−7 S/cm, the photosensitivity of an order of 102, and a crystalline volume fraction of 80 %. However, a 60 nm thick n+ μc-Si:H film deposited using a seed layer showed a high dark conductivity of 35 S/cm and a crystalline volume fraction of 60 %. Using n+ μc-Si:H films as drain and source contact layers in a-Si:H TFTs provides substantial performance improvement over n+ a-Si:H contacts. Finally, fully μ c-Si:H TFTs incorporating intrinsic m c-Si:H films as channel layers and n+ μc-Si:H films as contact layers have been fabricated and characterized. These TFTs exhibit a low threshold voltage and a field effect mobility of 0.85 cm2/Vs, and are far more stable under gate bias stress than a-Si:H TFTs.


Sign in / Sign up

Export Citation Format

Share Document