Characterization of Thermo-Electric Interface Material with Carbon Nanotubes

2007 ◽  
Vol 1056 ◽  
Author(s):  
Piyush R Thakre ◽  
Yordanos Bisrat ◽  
Dimitris C Lagoudas

ABSTRACTAn approach has been presented in the current work to fabricate and characterize nanocomposite systems for optimizing electrical and thermal properties without sacrificing mechanical properties. An epoxy matrix based nanocomposite system has been processed with different volume fractions of carbon nanotubes. The purpose was to tailor macroscale properties to meet competing performance requirements in microelectronics industy. The nanofiller consisted of comparatively low cost XD grade carbon nanotubes (XD-CNTs) that are optimized for electrical properties. This system was compared with another system consisting of single wall carbon nanotubes (SW-CNTs) as nano-reinforcements in epoxy matrix. The electrical percolation threshold (about seven orders of magnitude increase in electrical conductivity) measured by dielectric spectroscopy was found to be at lower loading weight fraction of SWCNTs (0.015 weight %) as compared to XD-CNTs (0.0225 weight %). However, the electrical conductivity after percolation was higher for XD-CNTs reinforced epoxy with respect to SW-CNTs filled nanocomposites. The governing mechanisms for this phenomenon were investigated using transmission optical microscope. The enhancement in thermal conductivity, measured using differential scanning calorimetry, was found to be moderate at lower weight loadings corresponding to electrical percolation. However, a 90% improvement in thermal conductivity was observed for 0.3 weight percent of XD-CNTs. Dynamic mechanical analysis was performed to measure the storage and loss modulus along with the glass transition temperature. No significant change in modulus values and glass transition temperature was measured for nanocomposites varied filler contents with respect to neat matrix.

Author(s):  
V.V. Korskanov ◽  
O.M. Fesenko ◽  
V.B. Dolgoshey

The aim of this work was to find the optimal conditions for the formation of nanocomposites, study their structure and properties and conditions for the formation of multicomponent materials based on epoxy polymers and carbon nanotubes with predetermined performance properties. The basis for the formation of epoxy polymers was an epoxydian oligomer (EDO) based on bisphenol A. Polypox H354 was used as a hardener for EDO. Carbon nanotubes (CNT) were used as a nanofiller for the preparation of nanocomposites. The research methods were a diffractometer for measuring the intensity of X-ray scattering in the region of small angles and a differential scanning calorimeter for obtaining heating thermograms. The electrical conductivity of the samples at a temperature of 293 K was measured at direct current according to the two-electrode scheme. In this work the structure, thermophysical properties and electrical conductivity of nanocomposites based epoxy polymers and carbon  nanotubes have been studied. It was found that at low CNT content the formation of nanocomposites occurs by the mechanism of epoxy network growth, which is accompanied by the displacement of CNT particles to the periphery of the epoxy matrix. This process is accompanied by an increase in the scattering intensity of the SAXS, a rapid increase in the glass transition temperature and the degree of crosslinking of the epoxy polymer. When the critical concentration is reached, CNT particles form a continuous cluster, which leads to occurrence percolation threshold, reducing the glass transition temperature, expanding the glass transition range, occurrence of pores and reducing the degree of completion of the crosslinking reaction in nanocomposites relative to the epoxy polymer. It is established that the improvement of nanocomposite properties and the occurrence of the percolation threshold is due to the maximum specific energy of ER-CNT interaction and is achieved at a critical mass concentration of nanofiller from 0,1% to 0,4%.


Author(s):  
Wenxin Wei ◽  
Guifeng Ma ◽  
Hongtao Wang ◽  
Jun Li

Objective: A new poly(ionic liquid)(PIL), poly(p-vinylbenzyltriphenylphosphine hexafluorophosphate) (P[VBTPP][PF6]), was synthesized by quaternization, anion exchange reaction, and free radical polymerization. Then a series of the PIL were synthesized at different conditions. Methods: The specific heat capacity, glass-transition temperature and melting temperature of the synthesized PILs were measured by differential scanning calorimeter. The thermal conductivities of the PILs were measured by the laser flash analysis method. Results: Results showed that, under optimized synthesis conditions, P[VBTPP][PF6] as the thermal insulator had a high glass-transition temperature of 210.1°C, high melting point of 421.6°C, and a low thermal conductivity of 0.0920 W m-1 K-1 at 40.0°C (it was 0.105 W m-1 K-1 even at 180.0°C). The foamed sample exhibited much low thermal conductivity λ=0.0340 W m-1 K-1 at room temperature, which was comparable to a commercial polyurethane thermal insulating material although the latter had a much lower density. Conclusion: In addition, mixing the P[VBTPP][PF6] sample into polypropylene could obviously increase the Oxygen Index, revealing its efficient flame resistance. Therefore, P[VBTPP][PF6] is a potential thermal insulating material.


2000 ◽  
Vol 661 ◽  
Author(s):  
Ai-jun Zhu ◽  
Sanford S. Sternstein

ABSTRACTRheological data are reported for a series of fumed silica filled PVAc samples, using fillers of different specific surface areas and surface treatments. Data at the glass transition temperature and 45 C above Tg are presented. The addition of filler systematically increases Tg, and all samples obey time-temperature superposition. However, temperature normalized and frequency normalized plots of loss modulus indicate that there is no change in the dispersion of the glass transition, with the only exception being a surface modified with covalently bonded polymer chains. Thus, contrary to expectations, an increase in filler content or change in surface treatment has no effect on the relative shape of the relaxation time spectrum at the glass transition. At 45 C above Tg, different behavior is observed. The filler concentration has a major effect on the nonlinearity of dynamic moduli vs. strain amplitude, with higher filler content reducing the strain amplitude at which nonlinear behavior is observed. Specific filler surface treatments result in major changes in the shape of the loss factor versus strain amplitude relationship. These results suggest that interfacial interactions strongly modify the far-field polymer behavior with respect to chain entanglement slippage at large strains.


2014 ◽  
Vol 699 ◽  
pp. 239-244 ◽  
Author(s):  
Nurhidayah R. Zamani ◽  
Aidah Jumahat ◽  
Rosnadiah Bahsan

In this study, Dynamic Mechanical Analyzer (DMA) was used to study the effect of nanoparticles, which is nanosilica, on glass transition temperature (Tg) of epoxy polymer. A series of epoxy based nanosilica composite with 5-25 wt% nanosilica content was prepared using mechanical stirring method. The weight fractions of nanosilica in epoxy were 5 wt%, 13 wt% and 25 wt%. 30mm x 10mm x 3mm size specimens were tested using DMA machine from room temperature up to 180oC at 2°C/min heating rate. From the analysis of the results, dynamic modulus and glass transition temperature of pure polymer and nanosilica filled polymer were obtained. The glass transition of a polymer composite is a temperature-induced change in the matrix material from the glassy to the rubbery state during heating or cooling. Glass transition temperature Tg was determined using several method: storage modulus onset, loss modulus peak, and tan δ peak. The results showed that the presence of nanosilica reduced Tg of epoxy polymer.


2013 ◽  
Vol 815 ◽  
pp. 639-644 ◽  
Author(s):  
Pei Ying Liu ◽  
Zhi Hong Jiang

Wood-plastic composite is a kind of viscoelastic materials. This paper presents the dynamic viscoelastic behavior of WPCs at different temperature, frequency and bamboo flours levels. The storage modulus decreased with the rise of temperature, the loss modulus and tanδ increased as temperature increased but decreased after reaching the peak. Frequency had a little influence on storage modulus and loss modulus, but the glass transition temperature increased with the increase of frequency, while the tanδ decreased. The glass transition temperature of this kind WPCs is about 85°C. The addition of bamboo flours had a positive effect on the dynamic viscoelastic behavior. From the results above, the activation energy of the WPCs was measured using an Arrhenius relationship to investigate the interphase between the wood and plastic.


2011 ◽  
Vol 31 (2-3) ◽  
Author(s):  
Mahesh Baboo ◽  
Manasvi Dixit ◽  
Dinesh Patidar ◽  
Kananbala Sharma ◽  
Narendra Sahai Saxena

Abstract This paper focuses on the comparative evaluation of the glass transition temperature (Tg), storage modulus and thermal conductivity of trans-polyisoprene (TPI) and CdS-TPI nanocomposite. The CdS nanoparticles synthesized by chemical route are dispersed into TPI using ultrasonic vibrations. Particle size of nanocrystals is obtained from X-ray diffraction and found to be 1.84 nm. Thermo-mechanical properties (Tg and storage modulus) are measured by dynamic mechanical analyzer (DMA), while thermal conductivity is a measured using the transient plane source (TPS) technique. It is observed that glass transition temperature and thermal conductivity are higher while storage modulus and mechanical properties are lower for CdS-TPI nanocomposites than for pure TPI. This has been explained on the basis of structural changes occurring due to introduction of CdS as filler into the TPI.


2016 ◽  
Vol 69 (1) ◽  
pp. 7845-7854 ◽  
Author(s):  
Aura Yazmin Coronel Delgado ◽  
Héctor José Ciro Velásquez ◽  
Diego Alonso Restrepo Molina

This study aimed to evaluate the thermodynamic properties of sorption isotherms and glass transition temperature (Tg) and the thermal properties of a dye powder obtained from turmeric extracts using spray drying. The sorption isotherms were evaluated at 15, 25 and 35 °C using the dynamic gravimetric method, wherein the isotherm data of the experiment were fit to GAB and BET models. Likewise, the Tg was measured using differential scanning calorimetry (DSC). Thermogravimetric analysis (TGA) was used to determine the mass loss, and the thermal properties (heat capacity, diffusivity and thermal conductivity) were determined using transient flow method. The results demonstrated that the GAB model best fit the adsorption data. The DSC analysis presented a glass transition temperature of 65.35 °C and a loss of volatiles at 178.07 °C. The TGA analysis indicated a considerable mass loss starting at 193 °C, resulting in degradation of the product. The thermal properties demonstrated a heat capacity of 2.45 J/g °C, a thermal conductivity of 0.164 ± 0.001 W/mK and a thermal diffusivity of 8.7x10-8 ± 0.000 m2/s.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2091
Author(s):  
Mohamed Saeed Barkhad ◽  
Basim Abu-Jdayil ◽  
Abdel Hamid I. Mourad ◽  
Muhammad Z. Iqbal

This work aims to provide an extensive evaluation on the use of polylactic acid (PLA) as a green, biodegradable thermal insulation material. The PLA was processed by melt extrusion followed by compression molding and then subjected to different annealing conditions. Afterwards, the thermal insulation properties and structural capacity of the PLA were characterized. Increasing the annealing time of PLA in the range of 0–24 h led to a considerable increase in the degree of crystallization, which had a direct impact on the thermal conductivity, density, and glass transition temperature. The thermal conductivity of PLA increased from 0.0643 W/(m·K) for quickly-cooled samples to 0.0904 W/(m·K) for the samples annealed for 24 h, while the glass transition temperature increased by approximately 11.33% to reach 59.0 °C. Moreover, the annealing process substantially improved the compressive strength and rigidity of the PLA and reduced its ductility. The results revealed that annealing PLA for 1–3 h at 90 °C produces an optimum thermal insulation material. The low thermal conductivity (0.0798–0.0865 W/(m·K)), low density (~1233 kg/m3), very low water retention (<0.19%) and high compressive strength (97.2–98.7 MPa) in this annealing time range are very promising to introduce PLA as a green insulation material.


Sign in / Sign up

Export Citation Format

Share Document